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Abstract 

 Electroencephalography (EEG) is able to measure brain 

activity on the microsecond scale and with an increase in the 

number of channels recorded can provide good spatial resolution. 

EEG has a long history in both clinical and experimental settings and 

has provided invaluable information on the brain’s functioning. 

Recent advances in the capabilities of EEG recordings have made 

the issue of how to statistically tackle the large datasets 

unavoidable. 

 Threshold-free cluster enhancement (TFCE) has recently 

been shown to be a superior technique in the analysis of fMRI 

datasets. Combined with non-parametric permutation based 

statistics, this thesis shows that TFCE can also be applied to analyse 

EEG datasets. TFCE essentially finds clusters in the data over 

multiple thresholds and combines the information with the strength 

of the signals in that cluster, enhancing weak but clustered signals 

to a level directly comparable to strong focal signals. 

Chapter 1 provides an overview of the variety of methods 

currently available. This includes the conventional analysis 

techniques, microstate analysis, statistical parametric mapping, and 

permutation approaches using intensity and cluster based statistics. 

A particular emphasis is placed on how, in one way or another, they 

have failed to become the standardised method sought after. This is 

in spite of the fact that most methods have been available for quite 

some time.  

The second chapter makes a formal presentation of the 

TFCE method starting with the fundamental reasoning behind the 

approach which maximises both statistically validity and signal 

sensitivity to a wide range of signal types. The resulting output of 



 

the method is then explored; along with the result visualisation 

program to show how the properties of the analysis lead to a 

maximally interpretable outcome. Subsequently, ideal weighting 

parameters for the analysis are found both theoretically and 

empirically using a broad range of simulated source datasets. 

Chapter 3 then deals with a direct comparison to the 

methods discussed in the first chapter using those same simulated 

sources, as well as three diverse datasets from real experimental 

settings. Here it is shown that the TFCE method, with both its 

theoretical and empirically derived settings, generally performs 

better and more consistently than all other methods tested in terms 

of sensitivity while still maintaining strict control over the number 

of false positives.  

In chapter 4 the method is expanded to more complex 

experimental designs common to the research field. Initially the 

auxiliary considerations are discussed from a purely theoretical 

perspective and then put into action by analysing results from a 

complex experimental design on the orientation of visual attention. 

In the final chapter, a summary of the work is given along with 

possible future research that could be done to further enhance the 

methods capabilities. 

The purpose of this thesis is three-fold. The first is to make 

the reader aware of the various difficulties in EEG analysis and the 

advantages and disadvantages of previously proposed solutions. 

The second is to present the TFCE method as a viable alternative; 

and act as a guide for researchers who have faced similar issues and 

asked the same questions. Thirdly, to demonstrate the superiority 

of the TFCE method in comparison to other methods but 

nonetheless highlight areas where it could be improved in future 

work. 



For my parents... 
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Preface 

Preface 

 The problem is misleadingly simple to state: given two or 

more event-related potentials (ERPs) in electroencephalography 

(EEG); how are these waveforms different from one another? The 

two ERPs might be generated from different groups of people 

conducting the same experiment such as men versus women, or 

patients vs controls; or they may be two different conditions in the 

same experiment, such as the brain’s response to happy versus sad 

pictures, or auditory responses to standard and rare frequencies. 

The ERPs of various experiments are usually created using fairly 

standardised procedures, and tend to all look fairly similar to the 

untrained eye. Figure 1 shows an example channel from a real 

dataset which compared patients with narcolepsy-cataplexy on a 

motor inhibition task. However, even here with a single channel 

example there are potential differences over multiple time points 

with different ranges and peaks. Given the variance in these 

average waveforms for both groups, it is impossible to determine 

statistical differences without an advanced method of analysis. 

Figure 1 – Real example of a single channel ERP.  
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To be certain; the problem stated is a large one in terms of 

both importance and sheer scale of the datasets. Modern ERP 

datasets usually consist of a large number of recorded channels (up 

to 256), with a broad time range around the event in question and a 

high time sampling rate (usually no less than 100 samples). These 

datasets are very comparable in size to those of other neuroimaging 

methodologies such as functional magnetic resonance imaging 

(fMRI), and the questions posed are similar. The EEG research field 

is still growing and thousands of articles are published each year in 

peer-reviewed journals
*
. The creation of ERPs, without a doubt, 

forms a large part of that research. However, despite more than 

100 years of research in the field of EEG, no method has yet to step 

up and reliably answer the proposed question. 

This thesis aims to break down the problem into several 

parts, and propose a novel method which solves these issues step-

by-step. As the title of this thesis suggests, the solution must be 

valid, sensitive, and interpretable. That is, valid from a statistical 

perspective in that we make little to no compromises in the data’s 

integrity, eliminate sources of bias, and control for risk of making a 

false positive prediction. That is, stating a difference is there when it 

really isn’t. A method’s sensitivity is how well it is able to detect a 

difference in signals when there really is one there. Too often 

sensitivity is seen as a direct trade-off to a method’s validity; and 

researchers will often take measures which increase sensitivity at 

the risk of having ultimately false research findings. Although the 

trade-off is true in some aspects, the relationship is no means direct 

or linear and there are ways to optimise both concurrently. A 

method’s interpretability on the other hand is more difficult to 

define; yet there are a few principle aspects which would likely be 

                                                                 
* 4935 since the start of 2011 alone (according to a PubMed search). 
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agreed upon. A method is interpretable if: the results can be 

understood without having to understand the precise details of the 

analysis; the structure of the results is directly comparable to the 

structure of the original data; precise claims can be made about 

differences in specific channels or time points; and finally, the big 

picture can be easily understood and summarised. 

Why do statistics matter? 

 To a large extent, this thesis discusses a statistical 

procedure. One that should ultimately help decide how strongly one 

should believe in differences found between ERP waveforms. Given 

the common apprehension to discuss any statistical process, there 

are two relevant points that should be made before any specifics of 

the methods at hand are dealt with.  

Firstly, although the statistical process is founded in 

mathematical theory, it need not be described with it. Statistics 

should be seen as a formal translation of our intuition about the 

data. For example; in order to quantify the real difference between 

any two sets of numbers we are tempted to simply look at the 

difference between the averages of those two groups. If we see 

however that those numbers vary a considerable amount, our 

intuition will already have lowered our belief that the simple 

difference in averages carries any importance. The commonly used 

t-statistic is nothing more than the differences in means, normalised 

by the variation of the two groups. Thus, the t-statistic can and 

should simply be seen as a formal description of that mental 

calculation that has already taken place (albeit perhaps somewhat 

unconsciously). The problem however is that with very large sets of 

data, like the ones we currently face in EEG, our intuition fails at 

seeing the whole picture; and we must rely on the statistical 
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process to convert that data into useful information. That said, each 

part of that statistical process should be simple enough to 

understand intuitively. If a process no longer conforms to our own 

intuition we should be encouraged to examine it fairly critically. The 

statistical analysis of EEG slowly has come to the point where 

relying on intuitive data description becomes problematic. At this 

point, the research community became divided in that researchers 

either chose to continue with simple analysis methods at the cost of 

bias, specificity, and data integrity; or attempt to confront the 

growing complexity at the cost of sensitivity. The current thesis 

aims to bridge the gap by presenting a method which has learned 

from the previous analysis attempts and handles the complexity in 

the data using directly intuitive ideas. 

Although most of thesis deals with the first general point 

about statistics, there is a highly relevant second point which 

demands discussion. Essentially, statistics matter because they are 

far too often misunderstood and used incorrectly. Thus is because 

statistics are simply a set of tools to describe numbers. The tool’s 

fundamental purpose is to turn data into information. Yet being a 

tool, statistics may be inaccurately used and the information 

extracted biased, manipulated, or incomplete. As several critiques 

have pointed out, this error is common to all scientific research. In a 

review article Ioannidis (1), made the bold statement that most 

research claims are false. In his review distinct points are made to 

support his statement and it seems as though EEG analysis has been 

particularly vulnerable to many of these. 

Firstly, an increase in the number of variables tested will 

lead to false findings. This is also known as the multiple 

comparisons problem and will be dealt with in more detail when 

discussing currently available methods in section 1.3 Briefly, with 

each test conducted, one increases the chances that a completely 
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random result will show a sufficiently high deviation and be 

proclaimed true. With EEG data, not only are the groups or 

conditional factors independent measures, we may also consider 

each channel and time point analysed as an independent test. 

A second point is that with an increase in the flexibility of 

experimental design, outcome measures, and analytical techniques, 

the odds are the published findings are false. Each level of flexibility 

will introduce a new line of analysis which could ultimately turn a 

negative result into a positive one. This results in the same issues as 

multiple measures, but the tests are conducted on the same original 

data. In EEG research flexibility can, and does occur at multiple 

stages. During the recording stage, the experimenter has an array of 

choices for number of electrodes and configuration. Due to the 

relative ease of setup, there are few hindrances to the overall 

experimental design that can be currently conducted. During the 

pre-processing stage, there are few standards to the type of 

frequency filters to be used, as well as the multitude of artefact 

correction techniques. 

Despite the lack of standards for the two stages just 

mentioned, there can be no doubt that it is the flexibility of 

outcome measures and analysis techniques that dramatically 

increase the probability of producing false research in the EEG field. 

There seems to an endless amount of information one can extract 

from the raw data; simple microvolt value, latency to maximal peak 

in the wave, frequency power, source localisation, connectivity, 

amongst several other possibilities. Once we have decided on some 

outcome measure (or range thereof), we can bombard it with an 

armoury of available statistical techniques. As we shall see in the 

next chapters, the history of EEG is long enough that some 

theoretical justification for the choices can certainly be found in 

some previous research. With so much flexibility, the journey from 
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raw data to a significant result seems to be more a matter of 

patience and perseverance rather than on the truth behind the 

data.  

The third relevant argument states that the more 

independent research teams there are involved in a field and the 

hotter that field, the more false research reports tend to appear. 

This point requires further explanation as it seems to contrast to the 

common perception that the more research that is conducted in a 

field, the closer we will get to the truth. The key here is that 

research teams are all too often independent, with no sharing of 

data or results. Furthermore, with the all the flexibility involved in 

EEG research, they do not often produce directly comparable 

results, even about the same research question. This in turn creates 

another multiple comparisons problem; here however the 

multiplicity comes from the various groups. Thus, one of the many 

research groups is bound to find some significant results among 

what could very well be completely random data. The hotter the 

research field, the larger the pressure will be to publish even small 

significant results and ignore the overall negative results. Over the 

last decade the hype of functional magnetic resonance imaging 

(fMRI) research is beginning to settle, and the relative low cost and 

ease of use of EEG is making it a popular investigative method once 

again. 

Given just how well the arguments for false research apply 

to the EEG field, one should certainly begin to worry about the 

quality and sincerity of many of the published reports. In fact, given 

the propensity for false research in the field; the size of the claims 

made by researchers may be regarded as proportional to the 

amount of bias in that study. It is important to note that much of 

this bias is completely unintentional, and this critique is not directed 

to the research standards of the individual experimenter. Rather, 
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the bias is more the result of the methodologies available in the 

field as a whole.  

The previous issues with research findings make the 

reported significance value, the p-value, untrustworthy. However, 

the arguments at least assume that that the p-value is still 

calculated correctly and the ability to interpret it is intact. However, 

several reviews over the last decade bring even these assumptions 

into question.  

 It is common practice, alongside the p-value, to report both 

the actual statistical value (e.g. t-value or F-value), along with the 

degrees of freedom. This should in fact be a redundant procedure 

because any one of the terms may be calculated when the other 

two are known. However, all the papers published in the highly 

respected, and peer-reviewed journals Nature and British Medical 

Journal in 2001 where checked precisely for this redundant fact (2). 

Surprisingly, the authors of the review found that over 11% of the 

reported p-values results in both journals were incongruent with 

the reported statistic and degrees of freedom. It is even more 

surprising when you consider that this value could only calculated 

where exact p-values were given, as opposed to the unfortunately 

common reporting of the p-values being over or under a given 

threshold (e.g. p < 0.05). It is interesting to note that a later review 

of this article found that those authors used an invalid statistical 

method to come to some of their other conclusions (3). It is not 

unreasonable to assume that if the research submitted and 

published in these two journals is guilty of what is a very simple 

statistical mistake to check, then this percentage is likely to be 

higher in many other journals. More recent reviews have confirmed 

this suspicion, and also indicate that the mistakes made are more 

often than not in the researcher’s favour (4–6). 
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 A much more difficult matter to dissect is how researchers 

understand and interpret the p-values they calculate. At its core, 

the p-value is an indication of how likely it is that a more extreme 

statistical value would be found if the value was indeed due to 

random chance. As most researchers interpret it, I would say 

correctly, the p-value is an indication of how much trust one should 

have in differences found between datasets. I would not be the first 

to point out that the significance tests are not constructed to 

provide binary outcomes of yes and no but to give an indication of 

the chance of error along a spectrum (7). Although, modern 

thinking has led to a standard threshold of 0.05 being the cut-off 

point for statistical significance, this is ultimately misleading.  As 

Fischer, the pioneer of significance tests, pointed out:  

If P is between 0.1 and 0.9 there is certainly no reason to suspect the 

hypothesis tested. If it is below 0.02 it is strongly indicated that the 

hypothesis fails to account for the whole of the facts. We shall not often 

be astray if we draw a conventional line at 0.05. . . .”(8) 

Thus it is the researcher who must decide how to interpret that 

chance value in light of previous findings, the quality of the 

methods used, the actual size of the effect found and the potential 

impact of the finding. 

 This fact is not always clear, even among statisticians. In a 

recent review of significance tests, Hayat seems to get the 

importance of p-values completely backwards (9). He argues that 

since p-values of 0.04 and 0.0001 fall below the standard 0.05, they 

should be regarded as equivalent evidence against the null 

hypothesis and no further conclusions should be drawn. Also 

explicitly stated is that p-values of 0.06 and 0.04 should warrant 

completely different conclusions since they lie on opposite borders 

of the 0.05 value set. It is precisely this view that leads to the poor 

practice of reporting significance with the symbols ‘<’ and ‘>’, rather 
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than simply quoting the value, which takes precisely the same 

amount of space on a page and effort on the part of the 

experimenter. The view that 0.05 is a strict cut-off with some inherit 

and mystical property to find truth is a common one, but ultimately 

the product of misunderstanding and a mind that prefers black and 

white answers over gray areas. 

 In rather crude terms, significance values should be 

inversely proportional to how much money you would want to bet 

on the result found being true. In this way, p-values of 0.04 and 0.06 

should warrant approximately the same wager, whereas you should 

consider raising the stakes when confronted with a p-value of 

0.0001. As we shall see in the first chapter, many of the current 

methods of EEG analysis rely on extra quantification of the p-value 

found. This is done by specification of its original statistical value, or 

its surroundings, or its experimental importance. This further 

quantification of the statistical results found can ultimately lead to 

any unexpected ‘significant’ effect being explained away, or any 

non-significant effect being accepted as a hypothesis. As already 

argued, p-values are not the only measure that should be reported; 

however, the actual value discovered by a test should be a useful 

one that needs no further special explanations to be understood. 

  If p-values give an indication of the chance of being wrong 

when you think you are right, then power calculations give us an 

indication of the chance of us being right when we say we are 

wrong. This is the other side of the coin of statistics that is largely 

omitted from explicit calculation. This is somewhat understandable 

given that in science, with the large exception of medicine, we pay a 

much higher price for false positives then we do for false negatives. 

Yet, we cannot ignore this area of statistics so readily since it is, 

after all, a scientists job to find out the truth about how to world 

works, and not simply to be a cynic. Strictly speaking, there is 
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always a trade-off between these two aspects. We increase the risk 

of committing one type of error in order to reduce the risk of the 

other. Many of the differences in current methods of EEG analysis 

are simply variations of where along this spectrum the lie. Most 

methods in daily use have largely sacrificed their statistical integrity 

and biased their statistics towards the goal of increasing their 

chances of finding a positive result. Given limits of current funding, 

competition for jobs and results, publication pressure, and the time 

and energy invested in research, this bias is to some extent 

understandable.  

Although understandable, it is undoubtedly damaging in 

the long run. There is a reason why the history of science has been 

far more careful with false positives than false negatives. A single 

positive finding can lead to multiple groups trying to replicate the 

finding, expanding on the finding, or using the result to spur more 

exploratory studies in the field. This takes an enormous amount of 

funding, time, and organisation. Yet, if there is good reason to 

believe something is true despite a negative result, there is bound 

to be some group that carefully examines the finding again. 

In summary, proper statistics are important because:  

 our eyes can often not see the whole picture (especially one so 

complex as the results of EEG experiments) 

 we are highly susceptible to many sources of bias 

 misunderstanding has often lead to incorrect application 

 the financial cost is so high when we get it wrong 

 and ultimately, mistakes in this area are so damaging to our 

pursuit of truth 
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Chapter 1 - Current Methods of 
Statistical Analysis 

Once individual ERPs have been obtained from the raw 

data there seems to be an endless amount of options in order to 

statistically compare them
*

. Having several options is not 

necessarily a negative point as long as there are certain reasons to 

choose one method over another. The reason could be by 

experimental design, data distribution or specific statistical 

outcome. However, in the EEG field, no such decision tree exists 

and yet the statistical goal is almost always to simply localise 

significant ERP differences in time and space. Methods of choice 

seem to better correlated with the research groups involved, or the 

specific field of interest rather than with the characteristics of the 

data or the experimental hypotheses.  

Table 1 presents a literature overview of the most recent 

studies at the time of writing and just how varied analysis 

techniques can be. Six of the ten studies presented use only a 

fraction of the channels they recorded in their analysis and the 

remaining studies only use the information to calculate some spatial 

average or other summarising statistic. Moreover, eight of the ten 

studies do not look at the all the time points in the ERP and select, 

mainly without empirical justification, only some of interest. Even of 

the two that look at all the time points in their ERP, the information 

is averaged over ‘windows’ of time.  

                                                                 
* Although the pre-processing stages of filtering, artefact correction, and averaging 
are crucial steps in determining the shape of the data taken for further statistical 
analysis; they are explicitly not discussed here. This is not only for space 
consideration but because the methods for pre-processing are already fairly well 
established and there is general consensus about the optimal methods. 
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Table 1 – The ten most recent studies found using the search terms “EEG” and 
“ERP” in PubMed. The table shows the article reference, ratio of channels recorded 
and subsequently analysed and the methods used. Note the relatively low ratios of 
channels recorded and actually analysed; the different variables extracted from the 
data; and the many different statistical methods used to answer the same basic 
questions. 

Ref 
Channels 
Tested / 

Recorded 
Variable Statistics 

(10) 64 / 64 

Amplitude Differences at 
P30, N45, P40, P60, N100, 
N120, P180, N280, N400, 
P1000  

MaxT Permutation 

(11) 2 / 62 
Amplitude and Latency of 
N200 (Fz) and P300 (Pz) 

ANOVA (no 
correction) 

(12) 1 / 32 
Amplitude of Peak to Peak 
N2-P2 component (Cz) 

ANOVA 

(13) 64 / 64 
Partial Least Squares 
between conditions 

Not described 

(14) 60 / 60 
Amplitude averaged over 
25ms time windows 

ANOVA for each 
time window (3 
window correction) 

(15) 24 / 64 

Average amplitudes over 
three time windows (300-
2000ms) and electrode 
regions. 

Separate ANOVA for 
each region (no 
correction), then t-
tests 

(16) 3 / 62 
Amplitudes over frontal 
channels 

One-way T-tests to 
baseline 

(17) 2 / 64 
Average in frequency and 
time domains for user 
selected maximum channel 

Multiple ANOVA 
tests (no correction) 

(18) 3 / 128 
Amplitude and latency of 
components N20, P25, N35 

Mann-Whitney non-
parametric test 

(19) 18 / 18 
Principle component 
analysis of N1, P2, N2 and 
P3 / Resting frequency 

Pearsons 
correlation of 
resting state 
frequency and 
components  
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1.1 Conventional Analysis 

 Much of the current statistical analysis of different EEG 

samples has attempted to simply avoid the increasing complexity of 

modern EEG datasets (20). The goal of various methods has been to 

reduce the data’s inherent complexity: often, only certain channels 

are taken over specific time points (21–23); or channels are grouped 

into areas such as left and right hemisphere (24); or samples are 

averaged over chosen time windows. The few measurements left 

for analysis are then subjected to simple t-tests or in more complex 

experimental designs to multiple but independent analyses of 

variance (ANOVAs).  

 There are multiple issues with any of these methods. 

Firstly, it is wasteful of the data collected. Data which required 

increased costs of equipment to measure more channels, increased 

time for subject preparation, and increased computational 

resources to record and analyse. Secondly, it usually involves 

various levels of user interference and, more often than not, 

arbitrary selection. This corruption of statistical validity is most 

often justified with an appeal to a-priori selection based on previous 

literature and established pathophysiological considerations. 

Although in limited cases this may be rationalised, this approach is 

too open to user biases (25) and with an abundance of literature in 

the EEG field one may find reason to pick out any number of 

channels or time points.  

 Furthermore, one should also be able to show that while 

some measurements show significant differences; these stand out 

amongst neighbouring channels or time points which are not 

significant (26). For example, if a study found that two groups of 

participants differed in a certain frequency band, this may only 

really be theoretically relevant when neighbouring frequencies are 
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in turn not significantly different. Sacrificing neighbouring 

frequencies or neighbouring channels for purpose of complexity 

reduction will ignore this information. Thus although the test may 

be more sensitive to the desired effects; the specificity of the 

results is left unknown. Similarly, one may be interested in the 

boundaries of an effect, and not just some maximum point of 

difference (27) (e.g. when do the differences first emerge, rather 

than when they peak). Secondly, with ever increasing complexity in 

paradigms, experimental manipulations, and novel ideas, one is 

highly unlikely to have sufficient specific evidence to justify the user 

choices inevitably related to the data reduction. And in doing so, 

might completely miss on unexpected effects. 

Even in the cases where there is a very specific a-priori 

reason for the researcher’s selection there is still good reason to 

analyse the whole data as an additional measure. Reporting only 

the results of the channels or time points corresponding to the 

specific hypothesis constricts the data’s usefulness to other 

members of the scientific community who may have other 

hypotheses about other time points or channels under the same 

experimental conditions.  

 A more data-driven process of complexity reduction has 

been to use principal component analysis or independent 

component analyses on the raw data then select only a few of the 

temporal and spatial components for further analysis (28, 29). 

These techniques depend on finding components which explain 

most of the variance, however given the low signal-to-noise ratios 

(SNR) of ERP signals in the raw data, it is unlikely that the principal 

components found necessary correspond to task-relevant events 

(30). Thus, results tend to be unstable and still require a large 

number of input parameters and assumptions about the data. 

Furthermore, when significant differences are found, it is impossible 



 

18  

 

Current Analysis 

to directly trace these differences back to the original channel-

sample pairs of interest. 

1.2 Microstate Analysis 

Murray provides a comprehensive review on EEG analysis 

using the theoretical underpinnings of 'microstates' (31). The term 

microstate comes from the initial observation that large scale 

changes in the states of consciousness of the brain (namely, wake 

and sleep), are accompanied by large scale changes in the shape 

and topography of the measured EEG waves. Taken a step further, 

we may also observe that in a much shorter time frame of a typical 

ERP, there also seems to be periods of stability in the EEG 

topography followed by rapid changes to another configuration. 

Thus, a period of stability, even if brief, can be termed a microstate 

since if there is no change in topography, we can assume the same 

neuronal generators have remained active. More accurately stated, 

different map configuration must have been caused by different 

generators since it is theoretically possible that different generators 

could cause the same topography, just as different objects may cast 

the same shadow. 

Upon reading the introductory paragraphs of Murray’s 

review of the procedure (31), one can see that the arguments made 

against current EEG analysis methods are virtually interchangeable 

with the ones made in this thesis. The vast size of datasets, user 

biases, and wasted data by a priori selection, are all discussed with 

critical examples. However, the suggestions on how to overcome 

these issues quickly diverge from there on. This begs the question, 

how can the same path lead to different destinations, and can we 

make some conclusions on which method is more appropriate in 

given situations or prior assumptions. 
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1.2.1 Analytical Approach 

 Classifying each time point as a certain microstate involves 

using one of two pattern recognition algorithms; K-clustering or an 

atomize and agglomerate hierarchical cluster analysis. Although 

each algorithm has their own strengths and weaknesses, both 

essentially identify ideal topographic maps over the grand averaged 

data which taken together describe an optimal amount of variance 

(optimal in that a high amount of variance can be described with a 

minimal number of maps). These ‘template maps’ can then be put 

back on the ERP time series in order to visualise the different 

microstates apparent in the ERPs. Importantly, the distinct 

microstates assigned to the averaged ERPs should not be 

necessarily viewed as significantly different since the templates are 

calculated from the data and then merely applied back to the data. 

Thus, there is always an assigned microstate, even if it does not fit 

back on the data well. One form of statistical significance can be 

calculated by fitting the template maps back on the individual 

datasets, and performing analyses on how well this fitting 

procedure describes each dataset. Authors proposing the 

microstate analysis have suggested several different parameters 

which can calculate and analyse the ‘goodness of fit’ but are 

reluctant to promote one measure over the other and each has its 

caveats. Instead, two quite different measures are generally 

advocated to assess the statistical significance level for the 

differences between two ERPs (32). Crucially these measures are 

completely independent of the microstate fitting procedure. 

 The first measure is the relatively common Global Field 

Power (GFP), of a signal. GFP can be roughly defined as the total 

squared deviation of each electrode, then normalised by the 

number of electrodes. When looking at the GFP, we are informed 

about the strength of activity in the brain at each particular time 
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point. The drawback of course is that we have lost information 

about the topography of the ERP, and identical GFP values can be 

generated from completely different topographies (e.g. exact 

opposite topographies). 

 The second measure constructed is therefore an attempt 

to summarise how different two ERP topographies are (even when 

GFP is similar). Global Map Dissimilarity (GMD, DISS or Global 

Dissimilarity Index (GDI), depending on the article), is essentially a 

measure of the spatial correlation between any two maps (either 

different conditions, or time points in a given condition), normalised 

by the instantaneous GFP. Importantly, neither of these two 

measures constitute a statistical test as they stand. Since the 

measure of GMD is a single measure, without means and standard 

deviations, parametric statistics cannot be conducted. Therefore, a 

non-parametric permutation test is necessitated (see the later 

section 1.6 for a description of permutation tests); oddly enough 

named a ‘topographic ANOVA’. The permutation test run however, 

does not seem to fairly take account multiple comparisons in that 

new empirical distribution is calculated for every sample rather than 

a single distribution (made from maximal values), over all samples. 

In practice, a somewhat arbitrary correction is made in that a 

minimum consecutive number of significant samples must be 

attained in order to justify further inference (33–35)  It should be 

noted that both these measures are calculated on data which has 

been average referenced. 

1.2.2 Evaluation 

 From a purely statistical perspective, the process described 

by proponents of microstate analysis is little more than performing 

two separate permutation tests which are uncorrected for multiple 

comparisons across samples. The two measures, GFP and GMD, 



 

 21 

 

Current Analysis 

emphasize two different aspects of the data but both essentially 

come from a single measure of uV in the ERP, and can thus be 

regarded as (relatively good), attempts to reduce the complexity of 

the data in different ways. If we include the additional measures of 

the microstate fitting procedure we are confronted with a wholly 

new multiple comparisons problem as we are analysing several 

tests on different measures which in the end still come from a single 

measurement of uV in the data. 

 It is also crucial to realise that the measures of GFP and 

GMD, as well as those of the microstate analysis are not dependent 

on one another in any way. For the most part, the microstate 

analysis is not one of statistical relevance. Like that of source 

estimation, the analysis will always produce a result; which would 

then still need to be further confirmed using statistical significance 

tests. In conclusion therefore, microstate analysis should be viewed 

as a potentially very useful tool in visualising the data, which could 

then be used to aid interpretation of the results. Therefore, if the 

user is willing to accept the theoretical underpinnings of the 

microstate procedure, there is no reason why the analysis cannot 

be run once an appropriate statistical test has determined 

significant differences in the original datasets. 

 Given that each method of reducing the complexity in the 

data has its own computational costs and validity drawbacks, what 

is needed is a data-driven process which uses all the data collected, 

with little to no input requirements from the experimenter, in order 

to maintain statistical integrity while being sensitive to the various 

possible differences between EEG signals. 
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1.3 Multiple Comparisons Problem 

Large datasets imply a large number of comparisons 

between channels, time points and groups. With each comparison 

comes the risk that any differences found are purely by chance, the 

type 1 error. This is the 'multiple comparisons problem' which has 

been the topic of years of discussion in the science community (36). 

As discussed in the previous section, conventional analysis has 

attempted to avoid the issue altogether by only testing a small 

fraction of the data. A common approach to correcting for this bias 

with a small number of comparisons is the Bonferonni correction; 

here the significance threshold is lowered proportional to the 

number of tests being conducted. However, with 256 channels and 

500 time points, p-values would have to be in the order of 10
-7 

in 

order to be deemed significant. If we were forced to take such a 

stringent approach to our data, we would never publish a positive 

result. The Bonferonni correction however assumes that each data 

point is independent of one another, whereas in EEG information 

from near sensors and time-points tend to be highly correlated. This 

fact has allowed the construction of several less conservative 

correction methods which nonetheless provide a strong and valid 

control the risk of false-positives to acceptable levels.  

1.4  Data Structure Considerations 

 The remaining approaches described here were principally 

developed with fMRI data in mind and applying them to EEG 

requires specific considerations. Primarily the data structure is 

different, with fMRI data being three dimensional, where each 

dimension represents the same type of relationships as the other, 

namely location in space. Furthermore, the total size of the 

dimensions is well defined by the scanner resolution, as well as the 
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relationship between points being a constant value measurable in 

millimetres. For EEG data, the data structure could be two or three 

dimensional with channel, time, and frequency as possible 

dimensions of the data. Importantly, the size of the data structure is 

highly variable between different datasets. Different numbers of 

channels could have been recorded, and even if the same number 

of channels were recorded their positions could be drastically 

different from one dataset to the next. Moreover, both the number 

of samples or frequency bins is not defined from the recording and 

will depend on user preferences or the frequency bins of interest. 

However, in many cases, EEG datasets tend to be in the same order 

of magnitude of size as those in fMRI experiments, and thus similar 

statistical methods should be expected in dealing with the large 

number of data points. 

1.5 SPM 

Statistical parametric mapping (SPM) is a software package 

which works as a toolbox in Matlab (Mathworks, Inc.). It was 

designed as a tool for the processing and analysis of neuroimaging 

data from PET and MRI, and has rapidly become the leading analysis 

tool in those fields. In the meantime several different versions have 

been development and countless extensions have become 

available. Not long after its development, two papers were 

published to show how the software could also be used for the 

analysis of EEG datasets with the same underlying principles of the 

other imaging modalities (37, 38). This is an attractive property for 

several reasons. Firstly, measurements techniques are increasingly 

being used in combination with one another. The simultaneous 

combination of EEG and fMRI can be used to locate activity in the 

brain with high precision in both the temporal and spatial domain 

(39–43). Furthermore, the combination of EEG and TMS has allowed 
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us to influence brain activity without having to rely on sensory 

stimulation (44–48). Secondly, field-specific biases in analysis would 

tend to be minimized. Lastly, it would allow for more direct 

comparisons of results across studies, even those which used 

different investigative techniques in their design. 

In SPM, the ERPs may be analysed in two forms. One 

option is to conduct an appropriate source analysis and the scalp 

data becomes a 4D, whole brain, time-series. Or, the original 

surface information is projected and interpolated to create a flat 2D 

image, and images are stacked over time to produce a 3D image of 

interpolated channel-sample pairs. There are issues with both of 

these methods but these are discussed later in section 6.3 SPM is a 

mass univariate approach, which essential implies that, at the first 

stage of calculation, each measurement (channels, time points, 

participant), is taken as a separate measure and any correlation in 

the data is not included in the model. For SPM the covariance in the 

data is accounted for at the statistical-inference stage by adjusting 

significance values using random field theory (RFT). As an 

oversimplification, RFT attempts to find a statistical cut-off 

threshold based on an estimate of the number of independent 

elements in a smooth image given certain assumptions (see (49) for 

a comprehensive overview). 

Several further methodological papers have since been 

published detailing additional procedures of SPM for EEG data (50–

55). Given its popularity in the MRI field, and the sound theoretical 

background that that has brought, is may seem fairly surprising that 

SPM has not become the standard analysis technique in the EEG 

field. In fact, SPM could only be found to be the principle analysis 
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method in 6
*
 publications to date(56–61). Looking at how SPM was 

used in those studies may give us a reason. In none of these studies 

was SPM used exclusively, or strictly as presented in the guidelines. 

Two studies (unnecessarily), only analysed discrete time windows 

(59) and one subsequently based inferences only on the 

uncorrected results (56) (thus ignoring the overall purpose of the 

SPM procedure). Another study, which used a combined fMRI-EEG 

approach actually just used paired-t comparisons and the specific 

SPM results could not be found (61). Two studies by the same group 

seemed to use SPM methodology correctly but then repeated 

essentially the same analysis using traditional ANOVA statistics in 

order to provide channel specific effects (57, 58). Lastly, one article 

only used SPM as a secondary analysis procedure while classical ERP 

component amplitude and latency analyses were presented in 

greater detail; and no explicit confirmatory comparison was made 

between the two results (60). Furthermore, none of the studies 

actually presented the SPM results tables and figures readily 

available after analysis. Thus, it may be more telling to ask why they 

chose to use SPM at all, and a quick examination of the authors, or 

acknowledgements reveal many familiar names to the fMRI field. 

In conclusion, even a rigorous analysis technique that SPM 

is seems to still be quite open to user biases in analysis considering 

each paper applied the approach in a slightly different way. The 

presentation of the results also seems to be unintuitive since it is 

automatically generated and yet rarely used in description. 

Additionally, due to its design having been built for PET and MRI 

datasets, the analysis process can be rather complex and unintuitive 

                                                                 
* Using a pubmed search for the terms “EEG” and “SPM” as well as reviewing the 
articles which cited the original article by Kiebel and Friston. 
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to undergo
*
. Finally, it may be the case that potential users are 

unsettled by the multiple assumptions that underlie the SPM 

procedure and whether they are appropriate to apply to their EEG 

datasets. 

1.6 Non-Parametric Solutions 

 Non-parametric permutation statistics require relatively 

few assumptions about data structure in comparison to its 

parametric counterparts. Parametric assumptions, such as 

normality, homogeneity of variance or sphericity, become hard to 

attain with increasing number of variables. More importantly here 

however is that non-parametric based statistics, such as the 

permutation statistic described here, offer an easy and intuitive way 

of dealing with the analysis of multiple sensors and time points 

while maintaining strict control over the false alarm rate. A further 

advantage is that any statistic can be used that one sees fit to 

describe the differences in signals. Permutation based methods 

have long been seen as ideal statistical tests but have largely been 

ignored as the computational cost has classically been too high (62, 

63). However, with current computers and optimised algorithms, 

processing times do not differ significantly
†
. 

1.6.1 Initial Calculation 

 The first step is to calculate an initial-statistic which 

represents the difference of two signals at each channel and time 

                                                                 
* Conducting the comparative analyses for this research was rather tedious, with very 
little confidence the correct procedure was being followed (even when analysing 
SPM’s own tutorial data). 
† For the analyses presented later in 3.5 the SPM method took 112 seconds, while 
the TFCE approach took 238 seconds. However, this SPM time does not include the 
necessary, and lengthy step of converting data to images. 
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point. Its selection does not affect the permutation process and can 

be chosen by the user to suite whichever type of difference is best 

suited to the experimental hypothesis. For instance, if absolute 

differences are the only concern, then the mean difference 

between the two samples can be used. On the other hand, if the 

actual values are irrelevant and differences in signal variance are 

the main concern then standard deviation or variance can be 

calculated. In most cases however, what is generally thought of 

when signals are described as ‘different’ is the difference in mean 

normalized by the variance; which is essentially the t-value. It is 

important to note here that although the t-statistic is generally 

associated with parametric testing, here we do not use the t-values 

directly to determine statistical significance (under the known t-

distribution) and so do not need to make the same assumptions.  

 For more complex experimental setups, common to 

modern EEG research, with multiple groups or multiple factors, an 

F-test can be performed as in the typical analysis of variance 

(ANOVA). Here, each F-value, representing main effects and 

interactions, would be included in the permutations and would be 

viewed separately in the results. As with any ANOVA, if a group with 

more than three levels or an interaction is significant, multiple 

individual tests need to be carried out post-hoc to determine where 

the precise difference is (see Chapter 4 for further details on 

complex designs). For the primary tests in this thesis, the choice of 

initial-statistic was limited to either the independent (unpaired) t-

test assuming unequal variances or the dependent (paired) t-test. 
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1.6.2 Permutation Statistics 

Figure 2 - Basic illustration of the permutation approach. Here, two groups of 3 
people can be permuted to give rise to several new groups each resulting in a new 
comparison statistic. All the statistics from the randomised group go into making a 
dataset-specific null distribution which is used to make inferences about how likely 
the original labelling actually is. This gives rise to an exact p-value for each dataset. 

 

 Since the choice of initial-statistic is open, and the number 

of comparisons to be made is highly variable, we have no frame of 

reference as to how large a difference should be before we can 

deem it to be significant. Unlike for parametric statistics, there is no 

pre-existing table which we can look up to determine where our 

significance cut-off point is. Under the permutation approach, a 

new frame of reference is calculated from the data itself which is 

specific to each analysis conducted. The permutation method works 

under the fundamental principle of: if the null hypothesis of no 

experimental effect is true, then the labels we applied to our dataset 

are meaningless for our measurement. Thus, a new dataset is 

created by randomly permuting the given labels such that some 
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members of the first signal are now part of the second signal and 

vice-versa. Hence, in any newly permuted dataset, there will be 

members of different conditions or groups now being part of the 

same label. This random exchange (permutation), of labels is done a 

sufficiently large number times to obtain new sets of initial-statistics 

each time with which to construct a new null distribution of data. 

The idea is that if the null hypothesis were true, the initial-statistic 

would about the same as the values found in randomly exchanged 

datasets. If the null hypothesis was false, and there were real 

differences between groups, we would expect the initial-statistic to 

be quite different from the other values obtained under 

permutation. The p-value of a given difference is the proportion of 

permuted statistics that are more extreme than the statistic from 

the original dataset. That is, the maximum possible p-value is 

dependent on the number of randomised datasets created. 

Importantly, the result of a permutation test is exact in that the p-

value obtained is precisely equal to the rate of false positives in the 

long run. 

 For example, imagine our two signals came from the 

averaged ERPs of two groups of participants, patients and controls. 

If there were no difference between patients and controls for this 

experimental manipulation, then the labels are meaningless and a 

patient could have just as well acted as a control in this situation.  

So in constructing our null distribution, we can take all the 

participants of the study and assign each participant the label of 

patient or control randomly and calculate a new statistic for each 

channel and time point from this data. If we had a total of ten 

participants in each group then there would be ‘n-choose-k’ ways in 

which we could permute the labels, thus creating 184,756 distinct 
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datasets
*
. Fortunately it is not necessary to build every possible 

dataset in order to obtain near exact results (see section 6.1 of the 

appendix). Since the number of permuted datasets created is 

directly related to the time taken for the analysis to run, typically 

values between 1000 and 10’000 of random permutations have 

been used to build the null distribution. As the power of computing 

continues to increase (or the patience of the researcher), this 

number will continue to get closer to the real maximal value.  

 This procedure only needs slight adjustment in order to 

deal with the multiple comparisons problem in EEG datasets. Rather 

than build a null distribution for each channel and time point, a 

single null distribution is created under which all samples can be 

compared. This is achieved by taking only the maximum value from 

each new dataset for the empirical null distribution. Note that the 

maximum value could come from any channel and any time point 

for each permutation. Thus, the entire permuted dataset is 

summarized by a single value, herein called the summary-statistic, 

which then forms a single data point in the histogram of the null 

distribution. The exact p-values for each original channel and time 

point is then calculated as with the single variable case by finding 

the proportion of permuted datasets which show values more 

extreme than the statistic in question.  

 The permutation process will always result in a valid 

statistical test, in the sense that the false positive rate is controlled. 

The justification for this has been well explained elsewhere and will 

be left out here to maintain user readability (64). Although the 

validity of the statistical process is clearly important, it's also useless 

unless the type of differences we are interested in can be detected 

                                                                 
* For one sample tests the number of permutations is 2n. For correlation analysis the 
number is n-factorial (n!). For one-way ANOVA it is a generalisation of n-choose-k: 
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by the method. Furthermore, the end result should be of a structure 

that is interpretable, especially given the vast amount of data. 

Therefore the choice of summary-statistic which is calculated from 

the original data, and taken from each permutation to form the null 

distribution, is a crucial element in making a test sensitive. Here, we 

will thus consider the various suggestions presented in previous 

work and discuss issues and how the data structure of EEG affects 

each. 

1.6.3 The maximum-statistic approach 

 Taking the absolute maximum comparison value from each 

permutation is the most basic summary-statistic that can be taken. 

Here, each newly created dataset is examined for its highest initial-

statistical value and the rest are ignored. The permutation 

distribution is then built from these maximum statistics, one from 

each permuted dataset. Finally, each original channel-sample pair 

can be directly compared to this calculated distribution to 

determine its p-value. In fMRI research this method has been called 

the voxel intensity approach since the only criteria of importance is 

the intensity of each data point, and not its location in space. 

This is the technique that is usually implied when studies 

have carried out permutation testing and was originally proposed 

for EEG analysis by Blair and Karniski in 1993 (65). It has 

subsequently been used in several other studies although with 

slight variation each time (47, 48, 66–68). For example, either the 

data was only controlled for multiple comparisons over the time or 

channel domain (by taking the maximum initial-statistical value 

from each time sample or channel over time, and building several 

empirical null distributions). Or only a small portion of the collected 

data underwent the permutation procedure. 
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Since the critical value is calculated from the data, the 

critical value will be higher when there are high values in the 

original data since randomisations close to the original labels will 

also result in higher values. For a single channel permutation test 

this has no special consequences, however, for multiple 

comparisons, it leads to a test which is less capable of detecting 

lower, yet still interesting, secondary activations. This is a particular 

problem for EEG because signals tend to be stronger at the 

beginning of the ERP and weaker at later time points. Or spatially, 

dipoles near the cortex will produce a strong focal activation near 

the dipole, and a broad weak activation of opposite polarity on the 

other side of the scalp. Thus, although taking the maximum statistic 

to form the null distribution guarantees strict control over the false 

alarm rate, these tests tend to only find intense, focal differences in 

the ERP, and are generally found to lack overall sensitivity (69) 

  A proposed solution to ignoring the spatial and temporal 

information in the data is that one should first test each point 

separately for significance and then perform a second analysis 

looking for a minimum set of adjacent channels and/or time points 

which are also significant. Yet, this double testing of the data is both 

inefficient and statistically questionable. More importantly however 

is how one to determine just how many time points or channels 

should be next to one another, e.g. how does one decide that a 18 

consecutive samples is just random activation, but 20 samples is a 

significant finding (33, 70–72)? 

1.6.4 Cluster Size 

 Cluster size tests were introduced in order to include the 

important spatial information of the signal into a single test for 

significance (72). While the maximum-statistic approach calculates 

the significance threshold directly from the initial-statistics, 
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clustering involves two thresholding steps. Data clustering in the 

entire dataset can be readily detected by first setting a threshold on 

the initial-statistics and measuring the sizes of connected channels 

and samples that are above this threshold. For example, if two 

neighbouring channels are above threshold, each for two 

consecutive samples, we have a cluster size of four. For each 

permutated dataset the size of the largest cluster is taken in order 

to build the null distribution. The second statistical threshold is 

calculated from the empirical distribution of maximal cluster sizes in 

order to determine the minimal cluster size in the original dataset 

for significance. Important to note here is that regardless of the 

cluster-forming threshold, the permutation method ensures that 

the control for multiple compares remains exact. Clearly taking into 

account neighbouring information adds a very relevant aspect of 

the signal to the analysis and has been demonstrated to be 

generally more sensitive than the maximum-statistic approach (74, 

75). 

 In using the cluster size to build the null distribution we are 

able to detect weaker, but more broadly distributed signals in both 

time and space and in this way is preferable to the maximum-

statistic approach. However, because only the size of the cluster is 

measured, information about the channel’s intensity is lost. 

Moreover, since a single statistic is now representative of a whole 

cluster, we can only draw conclusions about the cluster as a whole 

and cannot make direct inferences about the local maxima; thus 

inference is lost for specific channel-sample pairs. It should be 

noted that this is a rather severe limitation for fMRI data which has 

high spatial definition, but because EEG data has comparably poor 

spatial resolution, the main limitation is the loss of specificity in the 

time domain. 
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1.6.5 Cluster Mass 

The cluster mass approach attempts to improve on the 

cluster size approach by calculating clusters over a certain threshold 

and then, for each cluster, calculating the sum of values over the 

threshold (74–76). Here, not only the size of the cluster is 

important, but also the actual intensity of values in the cluster. 

Thus, smaller-sized clusters but with stronger activation can be 

compared to larger, weaker signals. For example, a cluster of two 

channels where each channel is 1.5 over the threshold (cluster mass 

= 1.5+1.5), is equivalent to a cluster of three channels where each 

channel is only 1 over the threshold (cluster mass = 1+1+1). 

Although cluster mass statistics seem to solve the cluster-size issue 

of being exclusively sensitive to distributed signals over time and 

space, we are still losing information about the local maxima in the 

clusters.  

1.6.6 The Threshold Problem 

 The larger concern for either the cluster size or cluster 

mass is the arbitrary selection of the initial cluster forming 

threshold value. In order to maintain statistical validity the only 

requirement is that the threshold be set a-priori to data analysis. 

However, the choice of threshold has dramatic consequences for 

the shape of the results as shown in Figure 3. In extreme cases, a 

low statistic will result in a single large cluster spanning the entire 

dataset, whereas an extremely high threshold may result in no 

clusters being found at all (77). For example, using a cluster mass 

technique Maris (75), found a large single significant cluster which 

spanned from 500-1500ms, which may indicate a threshold which 

was set too low. Although such a result is both statistical valid and 

sensitive; the extent of the single cluster makes the result nearly 

uninterpretable.  
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Figure 3 - Illustration of the threshold problem. Setting an arbitrary cut-offs of 50-
80% has a dramatic effect on the thresholds found, and hence the appearance of 
the results. 

 

 In between these extremes lies a range of values that may 

result in useful and interpretable results (although it remains case 

that the thresholds in the low range will still be preferentially 

sensitive to large distributed results while higher thresholds would 

still miss larger but weaker clusters of differences). However, one 

cannot unequivocally determine which exact threshold will give 

useful results for a particular dataset, and so any cluster method 

remains likely to introduce user biases. 

Rather than using direct t-value cut-offs, some have used 

uncorrected p-values from the known t-distribution. Although this 

may give slightly more stable results over different datasets (78–

80), this represents inconsistent theory in that such a t-value cut-off 
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are calculated based on parametric assumptions which we have 

already argued are generally not met in the data. Moreover, even 

this threshold is likely to be arbitrarily selected since there is no 

theoretical justification as to why a p-value cut-off of 0.05 would 

produce the most optimal set of clustering in the dataset. 

1.7 Chapter Conclusion 

There is an abundance of available methods used to analyse 

ERP data
*
. What is still rather unclear is why the superior methods 

of SPM or the permutation techniques haven’t completed taken 

over the field as they have with MRI. It may well be the product of 3 

distinct factors. Firstly, EEG’s long and slow development over the 

past 100 years has meant that analysis tools have always been a 

step behind technological possibilities. For MRI, the complexity of 

the data structure was immediately apparent and solutions had to 

be proposed while the technology was still being implemented. 

Secondly, recording EEG and creating ERPs is relatively simple and is 

often conducted by individuals with less technical experience. In 

contrast, the acquisition of MRI data generally requires a large team 

of people, many of which come from natural science or engineering 

backgrounds. Many researchers may opt for simpler techniques 

because more complex analytical techniques can be considerably 

more difficult to use, and the results more complex to understand. 

Lastly, conventional analysis is highly flexible and open to bias. This 

leads to an increased number of significant findings, which may or 

may not really exist. However, with the current state of research 

grants for funding, academic security and position, and scientific 

                                                                 
* Methods described are by no means exhaustive. E.g. see appendix 6.4 for source 
analysis 
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pressure, methods with increased sensitivity may be too appealing 

to forgo.  

Each method described has its own advantages and 

disadvantages. While some methods are clearly more acceptable 

than others, they all have some crucial faults which have held them 

back from becoming the mainstream analysis technique. In learning 

from the approaches several aspects for a candidate analysis 

method should be clear to be deemed optimal: 

 All of the recorded data should be taken into account 

o But strict control of the multiple comparisons problem 

is essential 

 The dependent measure used for analysis should be directly 

related to the data measured 

o That is, the magnitude and neighbourhood of the ERP 

 Non-parametric statistics should be used to avoid the 

unattainable assumptions involved in parametric statistics 

o And also intuitively control for multiple comparisons 

 Spatial information should be taken into account to increase 

sensitive to the common signals in EEG datasets 

o But arbitrary thresholding is a major issue 

 The analysis should be simple to perform 

o No technical knowledge should be necessary in order 

to obtain an accurate result 

 The output of the analysis should be easy to understand and be 

directly related to the original data 

o Researchers should be able to explore the results and 

share interpretations without having to go into 

detailed explanation of how they were made 
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Chapter 2 - TFCE 

2.1  General principles 

When we look at two ERPs, we have a general intuition about 

which differences we can trust to be really different and ones that 

are likely to be sporadic and random. This intuition is generally 

based on the magnitude of the difference, and whether the points’ 

neighbours show a similar pattern of differences. In this way, we are 

likely to trust very large differences even when neighbouring points 

are quite different; but we would also believe smaller differences as 

long as there was a large neighbourhood of points that showed the 

same pattern. Methods which only take one of these aspects into 

account will not only lack in sensitivity, but usually require extra 

qualification of their findings to compensate for the missing aspect. 

Clearly, our intuition alone cannot be the basis of inference 

statistics. However, we can introduce common mathematical 

notation to describe that logic. Thus, we can denote the magnitude 

of the differences between two ERPs as ‘h’ (for height of the point 

of a waveform), and the size of the neighbourhood surrounding that 

point as ‘e’ (for extent of the cluster size). Following our intuition, 

the real difference between those two ERPs at a given channel and 

time point ‘i’ is some combination of our newly defined parameters 

‘e’ and ‘h’. Since we are likely to give different levels of importance 

to each of our two parameters, we can give each a specific weight 

to each factor denoted as capital ‘E’ and ‘H’ respectively. 

The issues we have discussed with previous methods were 

faced in parallel in the field of MRI, and this mathematical 

justification of the intuitive difference approach is precisely what 

has recently been proposed in the MRI field by Smith and Nichols 
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(81). The goal is to enhance the initial statistic (e.g. the t-values), 

using both the intensity of the data point and information from 

neighbouring points. Following this, the enhanced statistic is further 

analysed by applying a maximum-statistic permutation method to 

control for multiple comparisons (see section 1.6.3 (82). The general 

idea is to enhance the value of weaker signals but which lie in large 

clusters to a level comparable with strong signals in smaller clusters. 

In doing so, the goal is simultaneously to suppress random noise 

that may have similar intensity as a true signal, but lack spatial-

continuity. Importantly, because signals are enhanced individually 

and then analysed, the data will retain its local maxima and minima. 

Thus unlike all the clustering methods, all the information about 

peaks and troughs in the data is kept. 

On a theoretical basis, this is done by calculating the supporting 

area under each data point. The supporting area is defined as the 

area underneath the point in the curve until its local minima. It is 

important to note that this is not a direct calculation of area under 

the curve but a point by point calculation akin to the calculation of 

the supporting structure for each point of a bridge. This value is 

then multiplied by the actual statistical intensity of the data point, 

defined by its height (h).  

From a computational standpoint, this calculation is 

accomplished by applying a sufficiently large number of thresholds
*
 

to the dataset of initial statistics which then approximate to the 

integral of the supporting area. The thresholding procedure is 

applied in evenly spaced steps (s), between statistical values of 0 

                                                                 
*
 The algorithm designed here uses 50 unique thresholds. This is more than 

sufficient to approximate to the actual supporting area. This number could 
be decreased if computational power is at a premium with the only effect 
of losing some accuracy in the final TFCE values. 
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and the maximum found in that dataset. For each threshold, 

neighbouring channels and time points are searched for above-

threshold values. The cluster extent, e (raised to some power E), is 

multiplied by the threshold value, h (raised to some power H). 

Finally, the values for each threshold are summed up to form the 

new value for each data point (in that case of fMRI, each voxel, and 

in our case, each channel-sample pair). When we combine all the 

information into a single mathematical equation we obtain: 

          
 

                

     
 

 

This equation can be seen as the mathematical realisation of 

our intuitive notion of trustworthy differences. Moreover it can be 

seen a generalization of the previously described approaches. For 

example, the parameter settings of E=0, and H=0 will reproduce the 

maximum-statistic approach. Or, if the theoretical underpinnings of 

the cluster-mass technique seem sensible, but the thresholding 

problem is too large to overcome, the weighting parameters E=1, 

H=0, are the generalization of this idea without the single threshold 

requirement (81). If the equation is applied to each channel and 

time point of our initial-statistic we can obtain a fair assessment 

which includes the information about statistic intensity and its 

neighbourhood. In the end, different types of signals are enhanced 

or suppressed such that, despite the varied nature of the signal, we 

can compare their values numerically. The general effect of the 

algorithm is shown in Figure 4 below. 
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Figure 4 – Ideal outcome of the TFCE algorithm on different signal types. Data 
points with large supporting clusters will have comparable values to those with 
high peak intensities. This idea not only makes direct comparison between signal 
types possible, but also reintroduces the maximum statistic approach as a viable 
option to make inferences about the data.  

 

2.2 The program 

The algorithms used for calculation were mostly 

programmed in MATLAB® (The MathWorks Inc., Natick, MA). 

MATLAB was used as the programming environment because of its 

easy and effective handling of large datasets and the multitude of 

tools already designed. However, MATLAB actually tends to be 
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rather slow for repeated processing of individual variables, and thus 

the more basic programming language ‘C’ was used for the actual 

TFCE calculation and other clustering algorithms. The same 

algorithm written in ‘C’ may be orders of magnitude faster in 

comparison to even the most optimised scripts in MATLAB. The 

scripts written in ‘C’ are then interfaced with the existing scripts in 

MATLAB using so called ‘mex-files’. These files must then be 

compiled for the specific computer configuration (e.g. 32 or 64bit 

computing). Section 6.2 of the appendix introduces pseudo-code of 

the computational algorithms which accomplish the analysis. 

2.2.1 Inputs 

 There are only two inputs that are required for the 

program to perform its calculations. The first input is the actual data 

itself. Currently this needs to be organised into a single Matlab file 

for each experimental condition or group. This file should contain 

three dimensions; the first is a column-wise list of the independent 

observations in the study. For single-participant datasets, this would 

be a list of each trial, whereas for multi-subject studies this would 

be a list of the participants. Along the second dimension (columns) 

are the channels of the ERP; the order of which needs to be the 

same over all trials and participants. The third dimension of the data 

is therefore the time points collected which will depend on the 

sampling rate of the final ERP. Since there can be no missing data in 

the data, the number of channels and time points must be the same 

for each participant. Although this shape of the data may seem 

rather specific, most ERP data has this channel by time, or time by 

channel structure already. Including all the participants and possibly 

performing a quick reshaping of the dimensions is usually all that is 

required to take an output from any ERP creating software and 

analyse it using the method described here.  
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 The second required input is the information about the 

locations of the channels. At the moment this should take the same 

format as the popular (and open-source), analysis toolbox EEGLAB 

(83) uses which is a structure file in MATLAB containing the channel 

label (e.g. ‘FPz’), and sufficient information to localise the channel in 

3D space. This may be in Cartesian coordinates where the position 

is specified by its X, Y, and Z points; or in spherical coordinates 

where two angles and the distance from the origin is provided. This 

information can either be systematically measured for each 

participant using infra-red tracking tools, or default coordinate files 

can be used. A further option, if the participant’s MRI is available, is 

to fit the standard electrode model onto the participants structural 

MRI. The correct structure can still be easily created even if EEGLAB 

is not available. 

 Several further inputs can also be directly specified as 

options but can usually be left as default values or changed later if 

required. The default number of permutations is set to 2500. If 

computational power is an issue then this could be specified to a 

lower value. On the other hand, if the user desires an increase in 

the ‘exactness’ of the result, this could also be increased (see 

section 6.1 in the appendix for a discussion). Furthermore, the user 

can theoretically also specify the value of the E and H weighting 

parameters but this is not recommended or advertised and is 

included only for testing purposes (see section 2.5 on the optimal 

settings). The name for the results file can also be specified directly 

although the results are saved with a unique tag in either case. 

Moreover, the sampling rate and any baseline period can, and 

should be specified if an accurate time reference is desired. The 

latter two values can also be set later while viewing the results as 

they are not used in the actual analysis of the data. 
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2.2.2 Result viewer 

 The results of the analysis are automatically stored in a file 

that can be readily accessed in MATLAB. The file contains several 

variables related to the analysis such as the original data, number of 

permutations used and the channel neighbours. The two most 

important of these variables are the calculated TFCE values of the 

observed data, and the calculated p-values of the data. Both of 

these are viewable as a channel by sample matrix where users can 

directly read off the p-value for a channel or time point of particular 

interest. Yet, with many channels and time points it is difficult to get 

an overview of the entire data in this way. For this reason a user-

friendly viewing programme was created so that non-technical 

users of the analysis are nonetheless able to explore the results in 

an intuitive way. 

 The overall layout of the ‘Result Viewer’ can be seen in 

Figure 5. Upon starting the program the user can load any TFCE 

results file previously made. Upon loading, an area-graph is 

displayed which shows the sum of the negative log of each channels 

p-value over time. The calculation essentially gives smaller p-values 

an increasing number, such that peaks in the timeline correspond to 

the samples with the lowest p-values over all channels i.e. highest 

statistical strength. By default the plot shown is for the first factor 

found in the analysis. For simple analyses which only have one 

factor this menu is hidden. For more complex designs, factors and 

interaction effects are available in the drop-down menu. 

 The user can then proceed to click on the graph in order to 

show the topoplot of that sample. The topoplot includes either a ‘-‘ 

or a ‘+’ indicating the channel position and whether this channel is 

significant or not at the specified significance threshold (default 
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setting at 0.05). The topoplot uses a triangulation algorithm to 

interpolate the values between channels fast and efficiently
*
. Left 

clicking over any channel reveals the channel’s label. Right clicking 

over a channel opens a new window which shows the original ERPs 

for the selected factor, with an asterisk over the zero microvolt line 

representing the significant samples. 

Figure 5 - Program used to view TFCE analysis results. See text for overview of 
features. 

 

 Finally, a table can be calculated which looks for connected 

significant channels and time points for a given significance cut-off. 

Several statistics are then given for each significant cluster found 

such as the total size, as well as its peak channel and sample. 

Another plot can then be created by selecting one of the clusters in 

                                                                 
* Algorithm works up to 100 times faster than EEGLAB’s topoplot function which is 
important when desiring to search through topoplots across samples quickly. The 
export button on the lower left export the topography in EEGLAB classical format 
which may be preferred in publications. 
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the drop-down menu. This plot visualised the entire cluster over all 

channels and time samples. The result-clusters make for a 

convenient way to report the scale of the analysis findings. It should 

be made clear that these cluster statistics in no way affect the 

statistical process and are only there to give another 

visualisation/summary of the results found by the TFCE process. 

Moreover, the data represented in these samples can be readily 

exported in order to create the visualisations in any another 

program (e.g. Microsoft Excel).  

 It is the fact of the TFCE method that the results are given 

in the same structure as the inputs which make the ‘Result Viewer’ 

so flexible. This flexibility and the ability for a user to easily explore 

different aspects of the results that makes the analysis accessible 

and interpretable. Any possibility to present the results that were 

open prior to the analysis are still open after the analysis but with 

the added benefit of being able to qualify them with statistical 

certainty
*
. 

2.3 Dipole simulation and sources overview 

In order to properly evaluate a method, one should already 

know what the answer should be, and then see how close a 

particular method gets to that goal. To that effect, six varying 

signals were simulated using Patrick Berg’s Dipole Simulator 

program (freely available at www.besa.de). Sources were created to 

give a wide range of intensities and cluster sizes in both the 

temporal and spatial domain. The simulated scalp potentials were 

taken from 129 electrodes in a geodesic array. 

                                                                 
* For example, one could still perform source reconstruction (see section 6.4 or 
microstate analysis in order to visualise the data and aid interpretation of the results. 
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 Noise datasets were also created using the Dipole 

Simulator which used 200 randomly located and randomly oriented 

dipoles. This method of noise generation leads to the special 

properties that the noise is correlated in time and topography with 

a frequency spectrum resembling of standard EEG with increased 

power in the alpha band. In order to assess the variability of the 

method, 10 complete datasets were created for each signal. A single 

dataset consisted of 36 signal plus noise trials.  

Furthermore, the effect of three different signal-to-noise 

ratios (SNR of 1, 2, and 5) were examined. The datasets’ SNRs were 

controlled by normalising both the simulated signal and noise data 

and then adjusting the level of noise in a single trial. Since the 

averaging process in a dataset will approximately reduce the SNR by 

the square of the number of trials, the noise in a single trial was set 

at     times the desired SNR. Due to the fact that the 

normalisation occurs for the maximum peak of the original signal, 

the SNR value specified really only applies to the most intense peak 

in the signal. Therefore, the actual SNR for most of the data points 

is actually much lower. 

The first source represents a single dipole with focal 

activation. Source two has two fairly narrow peaks with a broad 

base and has a large distribution over the scalp. The third source is a 

single dipole with focal positive and negative deflections and a large 

distribution over the scalp. The fourth source contains two dipoles 

active at different times. The first of which has a short focal 

activation while the second’s activation is identical to source two. 

The fifth source is similar to the fourth except the activity stems 

from just a single dipole at a different location. The final, sixth 

source represents the most complex pattern of activity. It consists 

of three separate dipoles in the frontal cortex, on the corpus-

callosum, and parietal cortex. For this source, three types of  
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Figure 6 - Overview of Sources Used for Method Analysis 
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Source 4  

 
Source 5  

 
Source 6  
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signals are portrayed: a focal but intense signal; a large but weak 

signal; and a medium signal in both aspects. The dipole locations 

and scalp topographies are further demonstrated in Figure 6. 

2.4 Signal Detection Theory 

 Since the original is known, we are able to use tools from 

signal detection theory to make a formal assessment of the 

effectiveness of any method or parameters. In its simplest form 

there are four possible outcomes for any detection method (see 

Figure 7). On the one hand when a signal is present, the method 

may confirm this (correct hit, or true positive), or fail to find it (false 

negative). On the other hand, when a signal is absent, the method 

may confirm this (a correct rejection, or true negative), or claim 

there is a signal present (false positive). The proportion of each of 

these values can be combined in different ways to give a single 

statistic which defines the overall performance of a method. 

However, the case here is not a simple and straightforward case of 

signal detection and several issues need to be considered before we 

can define how to optimally define a good performance. 

Figure 7 - Contingency tables outline the basic principles of signal detection theory. 
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2.4.1 Definition of a true signal 

In the strictest sense a true signal is detectable for any 

channel or time point where the activity is none-zero. However, 

with the signals having been generated by a true dipole source, 

virtually every channel over the dipole’s active period has some 

activity over zero
*
. For example, in the dipole’s active period of 

source 1, there are 564 data points above 0, but of these 43.6% are 

under 0.05 and 60.2% are under 0.1 (reminder: maximum signal 

strength has value of ‘1’ since the sources are normalised). 

Considering that the SNR is defined by the maximum signal 

strength, it seems unreasonable to expect any method to find these 

very small signals; even in the lowest noise environments. If these 

smaller activations are considered part of the true signal, each 

method would suffer greatly in sensitivity and the differences 

between approaches diluted. 

In the original TFCE paper for fMRI, Smith and Nichols 

recognised this issue and circumvented it by defining a true signal 

as those above 0.4 (a normalised value), and set the rest to zero. 

Although this would certainly address part of the problem just 

described, there are two severe problems with this approach. 

Firstly, this is a fairly drastic approach to simulated signals 

considering that, at least for the example of source 1 here this 

would mean eliminating 91.8% of the simulated signal. Secondly, 

setting a high truth cut-off will specifically eliminate the lower, 

larger clusters in the data and give preference to higher intensity 

peaks. This would in turn lead to a method that appears to function 

better for those signal types; perhaps acceptable for fMRI datasets 

but specifically unsuitable given the nature of normal EEG datasets. 

                                                                 
* If a channel crosses a contour line perpendicular to the dipole, the activity will truly 
be zero, but this is relatively rare 
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Essentially we have a similar problem to the threshold 

problem (1.6.6 in cluster statistics and thus one we are attempting 

to solve with TFCE. Clearly we cannot rely on defining a true signal 

as anything above zero, or methods will appear rather insensitive. 

However, there is no clear cut-off above zero that does not come 

with other trade-offs. After some experimentation with truth-

defining thresholds, the arbitrary cut-off point was set at 12.5%; this 

provided a reasonable balance between keeping most of the 

original signal but limited the bias of forming large clusters. That is, 

1/8
th

 of the maximal signal in the source was defined as a ‘real’ 

signal and any channel-sample pair activity that was under this 

threshold was ignored. Assessment was also made for truth 

thresholds of 25%, 37.5% and 50% but most methods were able to 

detect signal under these thresholds and accurate discoveries were 

subsequently counted as false positives (when in fact they were 

false false-positives). 

2.4.2 Binary versus continuous classifiers 

Not only is the ‘ground’ truth actually much more 

appropriately defined on a continuous scale, our method does not 

simply output binary values of signal present or absent. Rather, 

each data point is assigned a corresponding p-value, which 

represents the degree to which we should trust the signal to really 

be different. Fortunately, signal detection theories have developed 

its more commonly used methods for these cases of continuous 

classifiers. Namely, the receiver-operating-characteristic (ROC) 

methodology allows us to compare tests for both their sensitivity 

and specificity by calculating and subsequently plotting one against 

the other (actually 1 minus the specificity), over a range of scores. 

The most common way of summarising this curve is to take the area 

under it (AUC). 
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 Smith and Nichols (81) favoured a modified ROC approach 

in their simulations, but with some modifications. Rather than 

calculating the false positive rate (1 minus the specificity), from the 

simulated dataset itself, it was calculated from noise-only data. This 

gave them the advantage of not having to re-classify the ground 

truth after spatial smoothing since voxels near the true signal would 

have appeared significant. This effect is not of principle concern 

here, since we are conducting inferential tests which explicitly 

control the false positive rate
*
. Moreover, we are not smoothing the 

data prior to analysis and so any ‘leaking’ of the true signal which 

may occur due to the clustering methods, TFCE included, is of 

primary interest. 

There are however two issues using the ROC methodology 

that are, at least in the case of our own data, too serious to use 

these methods of assessment. The first is that we are not dealing 

with a balanced dataset of signals. That is, we have far more true 

negative signals than true positive signals. This biases any method 

which tends to preferentially find negative results. For example, if 

our data contains 90% negative signals, then we would obtain an 

accuracy rating of 90% simply by calling everything we find 

negative. Moreover, this creates a situation in which the potential 

for false positives is much greater then false negatives. A quick look 

back at Figure 7 shows that most of the basic summarising 

measures are sensitive to this bias (especially specificity). Given a 

large bias, it becomes almost irrelevant how many false positives 

are found in the data, specificity is bound to remain high. Thus the 

value will immediately tend towards the ideal value of 1, and in 

turn, so will the ROC. Although methods could still be differentiated 

on this basis, it is difficult to reliably see differences in AUC which 

                                                                 
*  Smith and Nichols directly analysed the calculated TFCE values, without 
permutation or any other form of inferential testing. 
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are so close to the ideal. Without direct access to Smith and Nichol’s 

dataset, we cannot confirm they were susceptible to imbalanced 

datasets, but given that for all comparisons except for the lowest 

SNR, most methods had an AUC indistinguishable from the ideal 

value, it can be assumed that they were. 

The second point relates to the fact that in many cases the 

ROC curve is used to visualise the optimal test cut-off point to 

define a criteria whereby we determine if the test was positive or 

negative. This is usually done by finding the result threshold which 

lies closest to the top left corner of the ROC curve; as this would 

find the optimal sensitivity and specificity. However, because we 

are using inferential statistics (p-values), as our test measure, we 

already have a threshold criteria determined by the scientific 

community of p less than 0.05. Since values above this threshold are 

of no interest to us
*
, we should create ROC curves only based on 

test values below 0.05. However, in any given test there may only 

be a few values (or none at all), which we can plot that are under 

0.05 and the resulting ROC curve would have a rather poor sampling 

rate and be highly variable. 

Taking all these issues account we propose three endpoints 

which, although none are ideal measures for reasons that will be 

discussed, in combination they present a good overview of 

performance. The first measure is sensitivity or recall at the p-value 

threshold of 0.05. Essentially this will indicate how much of the true 

signal was recovered in the test. This is chosen because we do 

already have some control over the false positive rate since we have 

                                                                 
* It is in fact likely that the optimal combination of sensitivity and specificity lies 
above the p-value threshold of 0.05, but it is irrelevant in the scientific field if a 
certain method may perform best if we were to consider a p-value cut-off of 0.8 for 
example. 
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chosen the conservative norm p-value. The second measure chosen 

was precision, otherwise known as positive predictive value, also at 

the p-value threshold of 0.05. This will inform us about what 

percentage of the positive test results are actually true signals. Both 

measures have become popular alternatives to the more traditional 

ROC statistics because they are not as affected by imbalanced 

datasets (84–86). These two measures have an inherent trade-off 

and should always be examined together. For example, a test that 

always indicates a signal present will have perfect sensitivity, but at 

the cost of having lost all precision.  

The final measure is special combination of the values from 

the contingency table known as Matthews Correlation Coefficient 

(MCC; (87, 88)), and is defined as:  
 

     
             

                             
 

As with the latter two measures of performance, the MCC was 

calculated for the threshold criteria of p = 0.05. As can be seen in 

the equation above, the MCC uses all four terms from the 

contingency table and gives an overall performance score, but is 

seen as more stable than other such measures for imbalanced 

datasets. The measure has been derived from theories of 

correlation testing such as the commonly used Pearson’s correlation 

coefficient and essentially represents the correlation between the 

predicted values in the table and the observed values. The MCC 

outcome is between -1 and 1 where a value of 1 indicates perfect 

performance, 0 is a performance equivalent to random allocation of 

test results, and -1 is a perfect negative correlation. Moreover, it 

has been shown that the MCC can be directly converted into the 

Chi-square outcome measure χ
2
 by squaring the MCC and 

multiplying it by the total number of observations. 
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2.4.3 Limitations of signal detection measures 

We have argued in favour of our three selected measures, 

recall (sensitivity), precision and MCC as optimal methods given the 

available choices. However, for all three measures, using only the 

binary test classification that comes with using a single threshold 

criteria comes with a significant overall drawback that we do not 

know how these methods perform under this threshold. For 

example, a method which assigns a significant p-value of just below 

0.05 to all the data is regarded as identical to one that assigns 

varying p-values based on the signal effect size. Thus, the chosen 

measures of assessment cannot be directly translated to compare 

methods if a researcher was more interested in significance values 

of under 0.01 for instance. 

There is another very relevant limitation, not only for the 

measures chosen, but for all assessment measures discussed. Since 

they all rely on absolute counts of true positives from anywhere in 

the data, all methods of assessment will be more biased towards 

clustering methods. This is because there are more counts of true 

positives in signals with an extended range of time or channel 

points. Given that the same dipole source can produce extended or 

focal signals by even small changes in orientation or depth, it 

cannot be argued that the inherit bias towards cluster methods in 

signal detection parameters is a fair one. For example, orienting a 

near surface dipole perpendicular to the scalp may result in a strong 

focal signal over say 3 channels. Changing the orientation to parallel 

to the scalp will result in a weaker signal but over say 15 channels. 

When only counting true positive signals, the first orientation would 

result in only 3 true data points, whereas the second in 15 true data 

points. If these two signals were present in the same dataset, the 

pure cluster method would find 15 of the 18 total true positive 

signals whereas the intensity sensitive method would only find the 3 
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of the 18. However in truth, each method has only been able to 

detect the consequence of a single dipole out of the two. Thus, 

there exist easily identifiable cases were this bias might overwhelm 

performance measures and the limitation should be kept in mind 

when reviewing the resulting tests. In other words, we must keep in 

mind that methods which favour the detection of larger clusters 

may not actually perform as well as the assessment measures may 

indicate. 

2.5 Optimal Values of E and H 

 Although we have removed the need for a single arbitrary 

cluster-forming threshold, we have introduced two new weighing 

parameters, E and H. This may seem like a step in the wrong 

direction but as Smith and Nichols demonstrated these values could 

be set to non-arbitrary defaults which could be determined 

empirically and have solid roots in several statistical theories (81). 

For a logical perspective, if the value of H was set to 0 each 

successive cluster measured would carry the same weight in the 

final sum, but since the clusters formed at the lower thresholds 

would naturally be much larger they would dominate the final sum. 

More intuitive is that clusters formed at increasingly higher 

thresholds should be given increasing importance, such that H 

should be larger than 0. Furthermore, when considering the initial-

statistic as t-values, we know that increases in t-value do not follow 

a linear increase in proportion to their importance. That is, a t-value 

of 4 carries more than just double the significance compared to a 

value of 2. Therefore, H should be larger than 1 to reflect this non-

linearity. 

 When considering an appropriate value for E, remember 

that when using low cluster-forming thresholds we are likely to find 
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very large clusters which span over a great deal of channels and 

time points. These large clusters at low thresholds hold little 

importance in practice in determining signal differences; thus, we 

should want to limit their importance by choosing a value of E less 

than 1. From a theoretical perspective Appendix B and C of the 

original paper for fMRI present a detailed discussion on the 

theoretical optimal values of E and H (81). Briefly, transforming well 

known weighted p-norm functions, and estimating negative log p-

values using random Gaussian fields suggest the values of 2/3 for 

the weighting of cluster extent, and 2 for the weighting of the 

intensity parameter.  

 Here we attempt to empirically derive at the optimal 

weighing parameters for general EEG data using simulated data, 

detection theory and 5 different setting for both E (0, 1/3, 2/3, 1, 2) 

and H (0, 1/2, 1, 2, 4), giving 25 different possible combinations. All 

of the six sources generated were tested, for each of the 10 

datasets for each source. This results in 250 TFCE tests for each 

source and a total of 1500 tests run for this assessment. Inference 

was made on the cumulative rank of each parameter setting for 

each source. In other words, the results of recall, precision, and 

MCC were ranked from worst to best performance and then 

summed up for each source. 2500 permutations were conducted in 

each test. 

2.5.1 Simulation Results 

Despite the variation in signal sources and SNR, there was a 

clearly discernable pattern of performance measures over the 

different parameters. Several general findings are summarised 

below: 

 Precision and recall show remarkably similar patterns in 

parameter ranking regardless of the SNR in the data. 
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 Recall progressively increases when the cluster extent is given a 

higher weighting by increasing the E parameter. 

 Recall is reduced when higher intensities are given more 

priority by increasing the H parameter. The exception being for 

cases where E = 2 for higher SNRs. 

 Precision generally increases with when the H parameter 

increases. Except in the cases where E = 0. 

 Higher values of E reduce the precision of the tests. 

 For increases in SNR, the optimal settings, as defined by the 

MCC, generally decrease in the E parameter and increase in the 

H parameter.  

Figure 8 – Average recall and precision for each source. The y-axis represents the 
cumulative rank of the 25 parameter combinations tested. Ranks are averaged over 
each SNR value of 1, 2, and 5. 
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Due to the nearly identical pattern of recall and precision over 

all SNR values, Figure 8 shows the mean ranking of recall and 

precision measurements over the three SNR levels tested. The MCC 

values on the other hand displayed different trends dependent on 

the data’s SNR level and thus Figure 9 shows the overall 

performance measure MCC over each SNR. More specifically when 

looking at the actual values calculated, for the lowest SNR of 1, 

average recall is fairly poor across all parameters, ranging from just 

0.4% to 20.7% of the data discovered (mean 8.5% ± 7.2). Precision 

on the other hand is kept to near ceiling levels for most sources, 

with the average ranging from 99.4% to 81.0% (mean = 94.1% ± 

6.5). Thus, all the parameter settings remain essentially quite 

conservative, sacrificing the number of significant points found but 

at least being fairly sure about those. Looking at overall 

performance, the MCC value has its maximum for both average 

MCC (aMCC), value and rank at the setting E = 1, and H = 1 (aMCC  

0.170 ± 0c.102). Although slightly lower rank, parameters E = 2, H = 

4, achieves essentially the same average MCC value but with 

reduced variability over the datasets (aMCC 0.170 ± 0.094). 

For the mid-range SNR of 2, the average recall improves 

considerably (mean 33.4% ± 17.2), but also with a now considerable 

range of values from 7.7% to 50.4%. Despite the large increase in 

sensitivity, precision remains fairly high (mean 87.3% ± 11.8), 

although values range from 99.7% to as low as 66.5%. The highest 

MCC value belongs to the parameter settings of E = 1, H = 2 (aMCC 

0.488 ± 0.077). Not far behind in average rank, and with less 

variability across the datasets is the parameters E = 2/3 and H = 1 

(aMCC 0.475 ± 0.067). 

With the SNR at 5, and thus with the most easily identifiable 

signal, recall ranges from 46.8% to 93.4% with a relatively high 

mean of 76.7% (± 16.1), of the true signal detected. As with the 
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other SNR values, precision is maximal for parameters where E = 0 

at 98.5% and lowest for high values of E at 58.5% (mean 79.0% ± 

13.9). Initially it may seem odd that precision decreases with 

increasing SNR, but in percentage terms this is not totally 

unexpected given the large increase in sensitivity and absolute 

number of true positives. Here, the most optimal method over all 

the sources is the parameters E = 2/3 and H = 4 (aMCC 0.768 ± 

0.030). However, several other methods perform almost equally 

well; E = 1/3, H = 0, 1/2, and 1 (aMCC 0.764 ± 0.030); as well as E = 

2/3, H = 2 (aMCC 0.762, ± 0.031); and E = 1, H  = 4 (aMCC 0.762 ± 

0.029). 

Looking across all SNR values the top five parameter settings in 

in order of aMCC and rank were E = 1, H = 2 (aMCC  0.462 ± 0.076), 

E = 2/3, H = 1 (aMCC 0.457 ± 0.067), E = 1, H = 4 (aMCC 0.454 ± 

0.057), E = 2/3, H = 0.5 (aMCC ± 0.080), and finally the theoretically 

determined value of E = 2/3, H = 2 (aMCC 0.448 ± 0.057).  

2.5.2 The ideal weighting for E and H 

All parameters tested perform fairly well, with the clear exception 

of E =0 settings (ignoring neighbourhood information), and E = 2, H 

= 0 (high cluster weighting with no regard for signal intensity). Thus 

it seems that as long as there is some weighting given to both the E 

and H parameters, tests will perform fairly well. On the grounds of 

this empirical test alone, the optimal settings appear to be E = 1, H = 

2 since it scored consistently high for all SNR values, and was the 

best overall. Moreover, this setting has a decent sensitivity to the 

various signal sources (mean Recall 49.1% ± 8.4) while maintaining 

high precision of the results (mean Precision 83.9% ± 8.9). However, 

there are several reasons why we remain more drawn to the 

theoretically derived values of E = 2/3, H = 2. As discussed in 2.4.2 

the performance assessments methods are biased towards  
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Figure 9 – Cumulative rank of Matthews Correlation Coefficient (MCC) over SNR 
values of 1, 2, and 5, for each source. Y-axis is the sum of the parameter ranking 
out of the 25 parameters of E and H tested. Note that the ideal parameters show a 
decrease in E and an increase in H as the SNR improves. 
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clustering methods since there would be more true positives found. 

Therefore a slight reduction in the E parameter or increase in the H 

parameter is closer to ideal given the known limitations in our 

assessment method. Additionally, the assessment measures 

essentially balance the importance of recall and precision, whereas 

in the research field, we tend to favour more conservative 

approaches if all else is even. As Figure 8 demonstrated, a decrease 

in E or increase in H is associated with higher precision values.  

 These arguments could just as well speak for parameters E 

= 1, H = 4. Judging from the pattern of the results, it certainly seems 

as though we can obtain similar performance by keeping a certain 

ratio between the two parameters rather than giving some 

definitive values to each setting. For example, settings of E = 2, and 

H = 8, although not explicitly tested, could be expected to perform 

just as well. But since this ‘fixed-ratio’ hypothesis would require 

further testing, and possibly a mathematical proof to be conclusive, 

we should stick to the ratio that works well and also currently has 

the most theoretical backing.  

The parameters E = 2/3 and H = 2 should remain as set 

defaults that require a solid theoretical and empirical reasoning in 

order to be changed. Firstly, because TFCE is, in terms of overall 

performance, relatively stable to changes in reasonable parameter 

settings anyways. Secondly, because the signal type is generally 

unknown prior to running the experiment and so changes would 

likely come after first analysis and thus bias the result. And finally 

because our aim is to eliminate these user biases and create a 

standardised methodology whereby results can be directly 

compared. 

A persuasive argument could be made to ‘tweak’ the 

parameter settings if the SNR was known. SNR cannot strictly be 
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known from real datasets since it would imply the precise true 

signal in the data was already known, and hence no need for further 

statistics. However, we can obtain an estimate of the SNR in the 

averaging process by additional calculating two averages taken from 

the odd and even numbered trials in the data. Assuming a single 

trial is just a linear mixture of the real signal and random noise, and 

assuming the true signal in the data remains constant throughout 

all the trials, subtracting odd and even averages will eliminate the 

true signal and leave an estimate of the noise with zero-mean with 

some noise variation. The real averaged signal on the other hand 

should substantially reduce the noise and enhance the true signal 

present in the data. The SNR of the dataset can then be estimated 

by dividing the signal variance by the noise variance. Using this 

estimate, one might be theoretically justified in changing the 

parameters of E and H to more optimal parameters. Namely a 

higher ratio of E to H values for low SNR and vice versa for higher 

SNR estimates. However, it is important to realise that these 

estimates may only be reliable for a sufficient number of trials 

where SNR is expected to be fairly high; and thus would ultimately 

lead to using the default values in any case. 

2.6 The Effect of Filtering 

Frequency filters of some kind are almost always used in 

EEG pre-processing and will inevitably change the shape of the data. 

In order to determine what effect this may have for the TFCE 

algorithm, raw data from source 6 at SNR 2, underwent 5 different 

filters. Source 6 was chosen because it contained 3 separate signals 

with different wavelengths. Filters of 10, 20, 30, 40 and 50 hertz, 

low-pass, zero-phase, 16th order, Buttersworth IIR filters were 

designed in MATLAB and applied to the data. Ten datasets were 
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formed and analysed as in the previous section but using TFCE with 

only the set parameters of E = 2/3 and H = 2. 

 Table 2 summarises the finding of the performance 

assessment.  Almost every filter used, with the exception of the 

10Hz filter, improves the MCC value. The filters do so essentially by 

increasing signal sensitivity, while maintaining a high precision of 

results. The filters are able to improve sensitivity by reducing the 

power of high frequency noise in the data, and thus improving the 

SNR. The 10Hz filter fails to improve the SNR, not because it fails to 

reduce the high frequency noise, but because one of the source 

signals has a wavelength of higher than 10Hz. Thus, the power of 

the true signal is also reduced and comparable levels of SNR to the 

no filter situation are achieved. As long as the filter does not 

impede in the same frequency range, the clustering extent of the 

data will increase and higher TFCE scores will result. From a 

theoretical perspective TFCE should be stable to different filtering 

approaches. Different filters will, by design, either reduce the 

intensity of a signal, but increase smoothness and so cluster extent, 

or leave the signal intensity intact but at the cost of jagged peaks 

and valleys which ultimately reduce the cluster extent. Filters thus 

have inherent trade-offs but ones which TFCE is sensitive to and 

thus the approach gives comparable results across filters. Even if 

the results are achieved through different weighting of intensity and 

cluster size. 

The single clear drawback of any filtering is however 

noticeable in the consequent variability of the created datasets. 

This is particularly noticeable for sensitivity where the standard 

deviation more than doubles in comparison to the no filtering 

situation. Thus filtering brings the potential gain of increased signal 

sensitivity, but by no means guarantees it. However, the noise in 

these datasets was modelled with a maximal frequency of 125Hz, 



 

66  

 

The TFCE Method 

and with a decreasing slope in frequency power. With real EEG 

recording, there are multiple sources of noise at potentially higher 

frequencies, and with increased power in those higher frequency 

bands. Therefore, conservative filtering techniques should always 

be used when possible as real noise often spans the entire 

frequency spectrum. 

Table 2 - Assessment results for 10, 20, 30, 40, and 50Hz low-pass filters on 
datasets of source 6 at SNR of 2. The shaded bars in the background provide a 
visual companion to compare values (e.g. Precision values do not actually differ 
substantially). 

 

2.7 Chapter Summary 

So far we have demonstrated the theoretical superiority of 

the TFCE method in several ways.  Firstly, it was shown how the 

TFCE equation can be seen as the mathematical formulation of the 

idea that both the size of the cluster and the individual magnitude 

of the point are important factors. From this it was shown that 

other methods such as the maximum-statistic and the cluster 

approaches could be generalised in the TFCE equation by using 

different weighting parameters. In doing so however, it could be 

directly seen that those weightings were not optimal from a logical 

perspective. Theory would suggest a value of E = 1 or less so that 

lower threshold clusters did not dominate the results. In turn H 

Recall std Prec. std MCC std

10Hz 0.228 0.100 0.944 0.042 0.309 0.069

20Hz 0.252 0.092 0.977 0.025 0.352 0.071

30Hz 0.238 0.093 0.980 0.021 0.341 0.069

40Hz 0.231 0.090 0.977 0.022 0.333 0.066

50Hz 0.220 0.090 0.978 0.024 0.324 0.066

No Filter 0.206 0.042 0.981 0.018 0.318 0.031
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should be higher than 1 since the intensity values are generally 

based on non-linear statistics and higher threshold clusters should 

be given a higher priority than those at a lower level. 

Dipole simulations were created for different signal types 

and noise levels in order to empirically determine optimal values for 

E and H. Generally, it was shown that increasing the weighting of 

cluster extent subsequently increases signal sensitivity. Whereas 

increasing the importance of higher level clusters increases the 

precision of the methods. Performance measures indicated that the 

optimal parameter settings over all sources and noise levels were E 

= 1, and H = 2. The theoretically derived parameter settings of E = 

2/3 and H = 2 also performed well, and arguments were made for 

those values to remain the default settings. It was also shown the 

method is relatively stable to different filtering parameters, and 

results could be improved with moderate, commonly-used filter 

settings. 

Furthermore, a brief overview of the analysis program was 

given; as well as a look at the guided-user-interface implemented to 

allow easy exploration the procedure’s results. The result viewer 

highlights how the method creates interpretable results which can 

be directly reflected back to the original ERP waveforms. More than 

this, the resulting topography and significance strength over time 

can be quickly examined to give an overview of the entirety of the 

experimental effects. 
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Chapter 3 - Direct Comparison 
to Other Methods 

Chapter 1 demonstrated the limitations of each of the 

currently applied summary statistics in permutation. In particular, 

the cluster mass, cluster size, and the maximum-statistic approach. 

Chapter 2 then introduced the TFCE approach and demonstrated 

how it overcomes these issues on a theoretical basis. Yet, even a 

conceptually optimal method will not be accepted unless it is also 

shown to be useful on a practical basis. To this end, the TFCE 

method was compared against many others using both simulated 

sources and several examples of real data. By comparing the 

methods ability to detect significant differences arising from a 

simulated source, we are able to give precise statements about how 

the method compares to others in terms of its sensitivity and 

specificity. Using real data from external sources, we can confirm 

the methods reliability in real-world applications. Despite the 

obvious benefits of direct comparison between methods, and the 

abundance of available statistical techniques for EEG, there have 

been relatively few publications that have attempted the feat. Two 

recent reviews are discussed below, followed by our own 

comparisons using the optimal TFCE settings discovered in the 

previous chapter.  

3.1 Previous Work on Method Comparisons 

In the first of two larger comparison studies, Lage-

Castellanos and co-workers compared four different methods of 

false discovery control to the analysis of ERP data (89). The 

maximum-statistic approach under permutation was compared 
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against the simple uni-variate test statistics (the uncorrected t-

distribution), as well as two proposed methods of global and local 

false discovery rate methods. In essence, these tests are all a form 

of intensity based statistics since they are designed to give a 

feasible significance threshold to the t-values calculated. Using 

single and multiple channel simulations of ERPs, they found that the 

maximum-statistic approach with permutations performed too 

conservatively compared to the other methods. 

There are three main issues with this work that bring the 

practical relevance into question. The first is that their simulations 

of datasets do not actually resemble that of real EEG. The two 

sinusoidal waveforms they generated are typical of ERPs but the 

waves remain the exact same over the selected channels and show 

no activity over the others. Thus there are no localisable peaks and 

valleys in their simulations over topography. This simulation 

method certainly makes the results easier to compare, but they 

actually may tell us little about the methods real potential. The 

second issue is that they used only the false-discovery rate and 

power measurements to assess the methods without an overall 

score which balances the two findings. Although it may be easy to 

create a mental scale of the measures in clear cases, the trade-off 

between the two factors cannot always be demonstrated fairly 

without a further measurement. Lastly, the comparisons are only 

made for intensity based measures of which none take the spatial 

and correlated structure of ERP data into account. As already 

discussed in section 1.6 these types of methods are already quite 

well known for their lack of sensitivity and over-conservativeness 

and pointing out the rather subtle differences between these sub-

optimal methods does not substantially further our knowledge on 

the subject. 
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In a more recent article by Groppe et al, several multiple 

correction methods were tested using simulated ERP data (90). This 

study differed to the previous one discussed in that the cluster mass 

statistics proposed by Maris and Oostenveld were also included 

(75); and different performance measures were used. Here no one 

particular method is proposed as optimal, but each method is 

discussed in its own right. In general the simulation results were 

consistent with theory in that the maximum-statistic approach 

proved to have excellent control of the false-positive rate at the 

cost of sensitivity, especially to distributed signals. The cluster-

based permutation tests only provided weak control over the 

number of false positives, and were especially powerful at detecting 

weak broadly clustered signals. For their conclusion, an interesting 

table is given as a guide to which method should be chosen given 

certain a priori hypotheses and assumptions about the data. 

The simulation comparison in this thesis has several 

advantages to those previously published. The first is that several 

different sources are used with realistic dipole sources of both the 

signals and the corresponding noise. Three different SNR values are 

used to examine how each method behaves in these conditions. 

Various cluster-forming-thresholds (CLFs), are used to examine the 

influence of this arbitrary but crucial choice for cluster-based 

methods. Moreover, not only are the methods compared for their 

sensitivity and power, but an overall assessment method is used in 

order to make decisions about which method is indeed the most 

optimal. 
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3.2 Simulated Source Comparison 

3.2.1 Source data 

Using the same simulated sources already described in 2.3 

the currently used summary statistics in permutation were 

compared against the TFCE approach. Two parameter settings were 

taken for the TFCE weighting factors of E and H. The first, TFCE-A, 

where E = 2/3, and H = 2, corresponds to the theoretically derived 

optimal settings; and TFCE-B, where E = 1, and H = 2, corresponded 

to the optimal settings empirically when tested in 2.5  

Ten datasets were created for each source, with 36 signal 

and baseline trials for each dataset. Noise level was adjusted for 

each dataset to create three distinguishable SNR levels of 1, 2 and 5. 

Then each method analysed all the datasets using 2500 

permutations for each dataset. For cluster approaches, cluster 

forming thresholds (CFTs), were set at t-values of 1, 2, 3, and 4 to 

see how each threshold affected the results over the various 

sources and SNR levels. 

The same performance measures were used as described 

in section 0to determine how close each method came to the 

known true signal: recall of the signal (also known as sensitivity); 

overall precision in the results (percentage of recovered signal that 

actually corresponds to true signal; and finally, MCC, a correlation 

measure of expected versus discovered signal which uses each 

value in the contingency table and thus gives an overall measure of 

performance. 
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3.2.2 The results 

 Despite the variation in source, each method is surprisingly 

consistent in its ranking for precision and recall. Source 

specificity is essentially only seen in the MCC values. 

 The trade-off between recall and precision is clear for all 

methods.  

 Cluster mass and size perform very similarly. Their results seem 

to further converge when SNR improves. 

 Both the cluster mass and size methods perform optimally at a 

cluster-forming-threshold of 2 for this data. 

 When increasing the CFT for both clustering methods, the 

sensitivity to the signal decreases but precision improves. 

 The maximum statistic approach is overly conservative. It is 

almost always the least sensitive of all methods, but 

subsequently has the highest precision. 

 Cluster methods with a high CFT essentially behave like 

maximum-statistic methods. 

Recall measures vary significantly over sources and SNR 

(e.g. cluster mass with CFT 2, does not find any significant data for 

the first source, but achieves a 60% recall for source 2 at SNR 1). 

Mean recall values overall were 7.6% (± 6.3), 27.3% (± 7.3%), and 

64.3% (± 5.8%) for SNR 1, 2 and 5 respectively. Cluster mass with 

CFT 1 achieves the maximum recall levels over all sources for both 

SNR 1 and 2 (21.5% ± 14.9%; 51.5% ± 14.6% respectively), but with 

considerable variability between datasets and sources. For the 

highest SNR tests, TFCE-B achieves the maximum signal sensitivity 

over all sources (91.3% ± 4.3%).  
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 Figure 10 - Average recall and precision for each source. The y-axis 
represents the cumulative rank of the 11 methods tested; TFCE (A, E=2/3, H=2; B, 
E=1, H=2; Cluster Mass (CM) and Cluster Size (CS) at cluster forming thresholds of 
t=1, 2, 3 and 4; and the maximum-statistic (MaxT) approach. Ranks are averaged 
over each SNR value of 1, 2, and 5. 
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 Figure 11 - Cumulative rank of Matthews Correlation Coefficient (MCC) 
over SNR values of 1, 2, and 5, for each source. Y-axis is the sum of the parameter 
ranking out of the 11 methods tested; TFCE (A, E=2/3, H=2; B, E=1, H=2; Cluster 
Mass (CM) and Cluster Size (CS) at cluster forming thresholds of t=1, 2, 3 and 4; and 
the maximum-statistic (MaxT) approach. 
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 Precision remained at fairly high levels for most methods 

over sources and SNR levels; a direct consequence of setting our 

performance measures at a p-value of 0.05. Precision tended to 

actually decrease when improving SNR. For SNR of 1 mean precision 

over all sources was 95.9% (± 5.8%), for SNR of 2 the value dropped 

to 91.6% (7.4%) then further to 89.7% (± 3.4%) for SNR of 5. This is 

likely to do with two factors. The first drop is likely caused by the 

fact that with increased sensitivity, there will be a higher chance of 

obtaining false positives from a percentage point of view. The 

decrease for SNR of 5 on the other hand is more likely to do with 

the fact that several methods are able to detect signal under the 

12.5% cut-off for a true signal, which would result in a false false-

positive (see 2.4.1 for the definition of a true signal). This 

explanation is supported by the fact that the standard deviation 

does indeed decrease with increased SNR as expected. 

 Due to the inherent trade-off between recall and precision, 

the MCC result is the determining factor to assess overall 

performance. For the low SNR of 1, the MCC ranges from 0.031 

(MaxT), to a high of 0.165 (TFCE-B) with a mean of 0.113 (± 0.076). 

For the slightly higher SNR of 2, values range from 0.170 (MaxT) to 

0.488 (TFCE-B) with a mean of 0.339 (± 0.063). Here the TFCE-A 

method was a close second with an MCC of 0.455. For the highest 

SNR of 5, values ranged from 0.442 (Cluster Size with CFT of 1), to 

0.762 (TFCE-A) with a mean of 0.635 (± 0.049). 

 As shown in Table 3; when averaging over all sources and 

signals the top three methods found were the TFCE-B (E=1, H=2), 

the cluster mass with CFT of 2, and the TFCE-A (E=2/3, H=2), 

method in descending order. However, the reverse order is true 

when looking at the variability of each of these methods, with TFCE-

A method being the most consistent of the three over all sources 

and SNR levels. 
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Table 3 – Mean value and standard deviation (std) for performance measures 
recall, precision, and Mathews correlation coefficient (MCC) for each of 11 
methods tested (see Figure 8 – Average recall and precision for each source. The y-
axis represents the cumulative rank of the 25 parameter combinations tested. 
Ranks are averaged over each SNR value of 1, 2, and 5. above for details). Each cell 
corresponds to the mean over all sources and signal to noise ratio. The top three 
values are highlighted in bold. 

 

3.3 Direct comparison to SPM and GMD 

SPM is currently one of the only available parametric 

methods that is able to test for significance effects over all channels 

and time points (see 1.5 ). For this reason it is also crucial to know 

how this approach to multiple comparisons correction behaves for 

simulated sources, especially in comparison to the TFCE method 

presented. Furthermore, microstate analysis, and its commonly 

used statistical measure, global map dissimilarity (GMD) have often 

been used in publications (see section 1.2 In this brief analysis, 

significance was tested on a single dataset from source 6 at the 
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medium SNR level of 2 using permutation statistics on the GMD 

calculation as well as taking the p-values directly from the SPM 

analysis. This simulated dataset was chosen because it contained 

three separate dipole signals representing large focal signals, weak 

but largely distributed signals as well as a signal with medium sized 

and intensity. Furthermore, each signal dipole was located in a 

different region of the brain and thus this dataset represented the 

most varied and complex combination of sources available for 

comparison. For the SPM results, a peak-level family-wise error 

(FWE), correction, based on random field theory, was set at p = 0.05 

and no cluster extent threshold was set.  

Figure 12 – Comparison of the TFCE method, SPM, and GMD in the analysis of 
source 6 at an SNR of 2. The sum of negative log of significance values over all 
channels are presented so that a higher value relates to a higher total significance. 
In the case of GMD, values needed to be scaled up since GMD is a single measure 
over time. SPM significance values are taken from the family-wise error correction 
based on random field theory. The scaled global field power of the original 
simulated signal is also shown. 

 

SPM found six significant voxel clusters of which only three 

were over 100 voxels in volume (FWE correction for clusters at 0.05 

would have been a minimum size of 280). These three large clusters 

found, essentially represented the positive and negative deflections 

of the first early dipole signal, as well as the central-positive 

deflection of the second dipole. The smaller three clusters were 
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scattered representations of the boundary-negative cluster of the 

second source dipole. SPM found no significant voxels for the third 

simulated dipole which represented a weak, but largely distributed 

signal. In comparison to the known true signal, SPM found just 5.5% 

of the total true signal, however had a ceiling precision level of 1 

(no false positives), and with that an overall MCC score of 0.193. 

Since the GMD is a reductive measure over all channels; no specific 

information on the sensitivity or specificity can be given that is 

comparable. For the GMD statistical comparison, only 11 of the 75 

total samples were found to be show topographical difference from 

its random noise baseline condition. Of these 11 none were found 

in the later portion of the ERP where the weak but broadly 

distributed signal was generated. Thus the GMD measure appears 

to be insensitive to the broadly distributed weak signals. 

The TFCE method using the theoretically derived values for 

E and H of 2/3 and 2 respectively, for the same dataset, had a recall 

of 28.0%, a high precision of 97.7%, for an overall MCC score of 

0.444
*
. Importantly, TFCE found significant channel-sample pairs for 

all three of the simulated dipoles in the signal, including the later 

weak but broadly distributed signal SPM completely failed to 

detect. Moreover, the TFCE method not only showed a larger total 

number of significant channel-sample pairs but also a generally 

higher level of significance for true positives. This can be seen in 

Figure 12 which shows higher total significance (as the sum of the 

negative log of the p-values over channels), over each time point. 

The p-values obtained by the TFCE approach most closely resemble 

the shape of the global field power of the original simulated EEG 

signal. It should be noted that since it is not possible to extract 

                                                                 
* In fact 18 of the 21 false positives found here were actually part of the true signal 
but under the 12.5% defined cut-off for truth. Thus precision and MCC scores are in 
reality substantially higher. 
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specific p-values for particular voxels in a result dataset, SPM p-

values were estimated by using the results of decreasing FWE 

corrected results. 

3.4 Discussion on simulation results 

The results here demonstrate the practical power the TFCE 

approach has for various kinds of signals that may be present in an 

EEG dataset. The optimal parameter setting found in the previous 

chapter, TFCE-B was shown to be the overall optimal method over 

all sources and SNR values. The theoretically derived parameter 

settings, TFCE-A, was also shown to be a particularly powerful 

method, ranking third overall with a higher precision at the cost of 

sensitivity to the signals. This in spite of the assessment measures 

being biased towards clustering methods. 

The cluster-based techniques performed generally well 

with a CFT of 2, with the cluster-mass technique coming in second 

place over all methods. Proponents of the technique however still 

face two major issues before the method could seriously be 

regarded as a generally accepted analysis. The first is to make an 

argument that a CFT setting of 2 was an optimal setting prior to 

conducting the analysis (see section 1.6.6 ). The second is that 

despite the method finding many true positives in the data it is 

unable to determine where the most significant peaks are in the 

data. This is because the cluster as a whole is given a p-value and 

not the individual data points. For example, for source six, where 

three dipoles create separate but slightly overlapping signals, the 

cluster mass approach finds only two large clusters of significant 

data spanning the entire time span corresponding to the positive 

and negative deflections on the scalp. Since the p-values for these 

clusters are 0.004 and 0.008 it is not possible to determine, on the 
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grounds of these results alone where the most significant points are 

in the data. Strictly speaking one would have to interpret these 

results as a single experimental effect spanning the length of the 

ERP. Therefore from a signal sensitivity perspective, the cluster-

based techniques may perform extremely well, but they achieve 

this at the expensive cost of validity and interpretability. 

Although the SPM and GMD analyses were only performed 

on a single dataset, the comparative results of the TFCE approach 

were far superior in sensitivity and MCC score to that of SPM. Given 

SPM’s similar approach to the maximum statistic technique, it is 

likely that its performance substantially increases for higher levels 

of SNR.  The GMD measure seemed to perform slightly better than 

SPM but since neither specific electrode configuration or statistical 

neighbourhood is taken into account, GMD still performed far 

worse than the TFCE measure for this dataset. Moreover, with the 

GMD measure, we have reduced all the channels to a single 

measure for analysis, and hence also for results and we cannot 

make inferential statements about an individual channel’s 

contribution to the GMD parameter. This is a rather steep price to 

pay for data that is nevertheless ultimately less accurate than TFCE. 

The fact that these comparisons were limited to a single 

dataset could be seen as a potential bias; however the dataset was 

selected based on the fact that it represented the most EEG-like and 

complex simulated signal. Furthermore, only a single analysis was 

conducted because of the increased dataset preparation time 

needed in SPM to obtain a result. Moreover, custom scripts needed 

to be written for SPM to obtain the FWE-corrected p-values for 

each channel-sample pair.   

Thus far we have shown that the TFCE method is valid in its 

statistical framework; it is superior in its theory by being a 
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generalised expression of other methods, with parameter settings 

with solid theoretical and empirical backing; and now the theory 

has been shown to be optimal in its sensitivity and precision over a 

range of signal types and SNR values. However, this superiority has 

only been demonstrated in the controlled setting of simulated 

sources. It may be still be argued that the range of sources and SNR 

values were particularly tuned for TFCE, or that EEG data does not 

really look like the simulated signals. Moreover, one may be curious 

as to how the method deals with data in the frequency spectrum. 

To approach the issues, in the subsequent sections, real data is 

analysed which was obtained from external sources and further 

compared to previously introduced methods. 

3.5  Real data from SPM 

3.5.1 Data source 

 All three datasets explored in subsequent sections were 

obtained from free online databases. The first real dataset comes 

from SPM's tutorial on EEG analysis of single subject data and is 

described in detail in chapter 36 of the SPM manual (EEG mismatch 

negativity data). 128-channel EEG was measured from a single 

participant while they performed an auditory odd-ball paradigm 

with 480 standard tones (500Hz) and 120 rare tones (550Hz). Raw 

data was average referenced, down-sampled to 200Hz, and epochs 

were created from 100ms before event onset to 400ms post event 

(101 total samples). Trials with artefacts were rejected after a 

simple threshold detection algorithm set to 80 μV leaving 437 

standard trials and 107 rare artefact-free trials to be compared. 

Here, two analyses were carried out to compare several 

different methods using high and low signal to noise ratios (SNR) in 

the first dataset. For the high SNR version of the dataset, all 
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available trials were used. For the low SNR analysis, only the first 

20% of the trials were used from both conditions leaving 88 

standard and only 20 rare trials. It is relevant to examine different 

levels of SNR as this directly translates the sensitivity any method 

has. Moreover, if a method can be shown to work at low SNR then 

paradigms could be constructed with fewer trials being necessary in 

order to elicit the correct statistical result. 

3.5.2 Results 

Figure 13 shows an overview of the main findings of a 

selected few methods. The original SPM analysis of 100% of the 

trials showed 6 significant clusters of data with the largest having 

their peaks around 300, 270 and 160ms. The highest significant 

voxel was found nearest to channel A3 at 300ms. The second largest 

cluster corresponded to the negative deflection of the first cluster. 

For the cluster around 160ms, the peak significant voxel was found 

nearest to channel C1. The clusters essentially form two larger 

effects of interested. A much smaller cluster of only 2 voxels was 

also found around 100ms. 

 The two smallest clusters found had sizes of 6 and 2 

channel time-pairs which indicated that essentially any clustering in 

the data at that threshold is deemed significant. The permutation 

distribution for these approaches indicated that for most random 

relabelings no channel-time pair was over T = 4.5 and so the 95% 

cut-off was zero, meaning even a single channel-time pair would 

have been significant. This explains why the approaches 

demonstrated essentially identical results as the maximum statistic 

approach. The difference in significance power between the two 

approaches stems from the fact that the specific p-values for the 

cluster approach were the minimum possible value while the 

maximum statistic approach the p-values were not quite minimal. It 
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is worth repeating that although mean time points were given for 

clusters, there are no intensity peaks in p-value since these are the 

same for all data points within a cluster. 

Figure 13 – Overview of selected methods in their analysis of 100% of the SPM 
mismatch negativity tutorial dataset (top), as well as when using only the first 20% 
of the trials from the same dataset (bottom). Graphs depict the sum of the 
negative log of the obtained p-values over all recorded channels such that a higher 
value is indicative of lower p-values or more channels with significant differences. 
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 Finally the TFCE approach yielded 5 significant clusters. The 

largest cluster (2147 channel-time pairs) around 260ms was 

comparable in size to the low threshold approach. The second 

largest cluster (1180 channel-time pairs), had a mean time point of 

196ms but upon further inspection there were clearly two clusters 

joined by a small, minimally significant (mean significance p = 

0.0115), chain of channels at the time points between 190-220ms. 

The earlier peak in the cluster occurred at 165ms at channel A1 (Cz), 

whereas the later peak was found on channel A13 (posterior left) at 

255ms. A third large significant cluster (745 channel-time pairs), 

which essentially represented the opposite sign of the first largest 

cluster, peaked at 310ms. Interestingly, the TFCE approach also 

yielded two smaller significant clusters centred at 50ms and 75ms 

which no other method reported (although included in the low-CFT 

cluster approaches). Although inspection of the ERPs would suggest 

these are real differences, although without some ground-truth it 

cannot be known whether they are false positives or not. 

 In summary, the low threshold cluster size approaches 

essentially found all data points to be significant after 20ms. The 

higher threshold cluster approaches performed like a simpler 

maximum statistic approach since any channel-time pair over the 

threshold was found to be significant. The SPM, TFCE, and 

optimised cluster approach all performed similarly with the TFCE 

approach being equally sensitive to the main differences at 160ms 

and 300ms, while SPM and cluster methods showed preferentially 

sensitivity to the later component. Furthermore, the TFCE approach 

found earlier significant channels that no other approach found. 

Figure 13 (bottom) gives an overview of the comparison 

when using only the first 20% of the data. SPM analysis showed a 

single small significant cluster (13 voxels) at 315ms. As with high 

SNR data the cluster size and cluster mass techniques performed 

similarly, finding essentially the same significant data but with 
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different p-values. Low threshold (T = 1.5) found a single large 

cluster (1241 channel-time pairs) from 40ms to 400ms, with the 

cluster mass approach finding a higher p-value for this same cluster. 

The medium threshold (T = 3.0), yielded a single cluster (85 channel-

time pairs) at 320ms with both approaches having similar p-values. 

When using a high CFT (T = 4.5), only the cluster size approach 

found a single significant channel across two time points (315ms 

and 320ms). The maximum statistic method found no significant 

channel-time pairs for this reduced dataset. 

 The TFCE approach also yielded a single significant cluster, 

but of 257 channel-sample pairs involving 25 unique channels and 

ranging from 235ms to 365ms. Upon further inspection of the 

cluster, again, two separate peaks were clearly present. The earlier 

peak occurred at 260ms around electrode D20 (left temporal) while 

the later peak occurred around electrode A3 (left central-posterior) 

at 320ms.  

3.6 Real Frequency Analysis from SPM 

3.6.1 Data source 

 This dataset represents a single channel from a MEG 

experiment exploring the perception of faces to scrambled pictures 

and again comes from the SPM tutorial (Chapter 37 – Multimodal 

face-evoked responses). In this study 275 MEG channels were 

measured, epoched around the events from 200ms prior to 600ms 

post event (161 samples), then baseline corrected and down 

sampled to 200Hz as per instructions in the SPM manual. As in SPM, 

it is possible to compute and analyse all channels in the time-

frequency bands but a single channel was taken in order to directly 

compare the results of the TFCE approach to the SPM analysis 

described in the SPM manual. 
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3.6.2 Results 

Both the SPM and the TFCE found two similar significant 

clusters of data. For the lower frequency cluster, SPM found 79 

frequency-time pairs with peaks at 5Hz and 185ms. The TFCE 

approach found all the same data points to be significant but 

included a further 19 frequency-time pairs, and had its peak at 5Hz 

and 190ms. For the slightly higher frequency cluster SPM found only 

32 frequency-time pairs to be significant while the TFCE approach 

found 98 frequency-time pairs in the same region to be under the 

significance threshold. For this cluster, both methods had the same 

frequency and time peaks at 12Hz and 100ms. 

3.7 Reanalysis of previously published group data 

3.7.1 Data source 

This dataset is taken from a study where 14 total 

participants performed a go/nogo animal categorisation task and 

demonstrates the approach for a paired group comparison. The 

dataset has been previously analysed using different methods (91, 

92). In the task, participants were required to release a button 

whenever a briefly-presented picture contained an animal. EEG was 

recorded from 32 channels from the international 10-20 system, 

average referenced and down sampled to 500Hz. Each participant’s 

ERP was created by averaging over animal and non-animal trials 

from 100ms before and 400ms after picture onset (250 samples). 

3.7.2 Results 

Analysis found 3 clusters of significant (p<0.05) data. The 

largest cluster (710 channel-time pairs) ranged from 172ms to 

340ms. Its peak occurred at channel at 238ms and represented an 
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increased positive amplitude for non-target distracters primarily 

over posterior electrodes (T13= 9.31, p= 0.0005). The second largest 

cluster (441 channel-time pairs), ranged from 176ms to 284ms. Its 

peak occurred at 208ms on channel F4 and roughly corresponded to 

the mirror, frontal activity of the first larger cluster (T13= 6.71, p= 

0.0015). The third, smaller cluster (106 channel-time pairs), was 

found between 296ms to 398ms. The peak here was found to be at 

382ms at channel POz (T13= 8.49, p= 0.0015). From its location on 

the scalp and longer latency this likely represents a secondary signal 

whereby non-target distracters had a lesser positive amplitude than 

targets. The earlier deflections at 98ms and 120ms, described as 

significant in the paper, were not found using the TFCE method with 

the smallest p-values at 98ms and 120 being 0.51 and 0.42 

respectively. Figure 14 shows the three clusters found to be 

significant and the topography at the time points of the highest sum 

of the negative log p-values over the 32 channels measured. 

Figure 14 – Summary of significant results of the TFCE reanalysis of group 
comparison. Significant clusters are calculated post-analysis by searching the p-
value structure for connected channels or time points that are under the specified 
significance threshold (in this case 0.05). Three clusters of significant data were 
found with different peaks of effect.  

 



 

88  

 

Method Comparison 

3.8  Discussion on real data results 

Results from all analyses essentially indicated that the TFCE 

approach, in terms of sensitivity and specificity, performed on par 

or better than other approaches for single-subject channel-time 

data, at different SNRs, as well as frequency-channel data and group 

comparisons.  

 For high SNR data all approaches yielded some significant 

results although several differences in result structure were 

immediately apparent. The maximum-statistic approach is the most 

basic of all methods since information about the relationship 

between channels in time and space is not taken into account, and 

it is therefore not surprising that this method was the least sensitive 

to differences in conditions. Setting a CFT to 4.5 was equivalent to 

the maximum statistic approach since most permutation datasets 

only found much lower t-values. Thus, the permutation distribution 

found that the minimum cluster size necessary for significance was 

1 channel-sample pair. Thus, setting the CFT to an arbitrary 4.5, in 

this case, is analogous to arbitrarily setting the t-value significance 

threshold to 4.5, a procedure which clearly has no statistical 

validity. In fact, the 5% cut-off value of the permutation distribution 

for the maximum statistic was 4.489. Therefore, even though the 

algorithm by which the high-threshold cluster approach is 

calculated is statistically valid, the process is essentially equivalent 

to a non-valid one; and a CFT of 4.5 could be considered a lucky 

guess. The TFCE approach, because every data point is calculated, 

always has some maximum value for each permuted dataset, and as 

such will always have a distinct distribution with consistent peaks 

and valleys and will circumvent the floor effects described above. 

 On the other hand using a relatively low threshold to form 

clusters is extremely sensitive to neighbouring information and 
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even minimal consistency in the data values will result in significant 

data points. Considering the high correlation between neighbouring 

channels in EEG, especially with high density recordings, minimal 

consistency in their statistical values can almost be guaranteed. The 

finding of significant differences already after just 20ms post 

stimulus is also indicative of an increased false positive rate using 

such a low threshold. Perhaps most importantly is that the low 

threshold approach highlights one of the principle weaknesses of 

the cluster approach in that since every data point in a cluster is 

given the same p-value, there are no individual localisable peaks in 

the data. Thus, even for the high SNR data we would only be correct 

in concluding that the experimental manipulation had a significant 

effect after 20ms over most channels. Due to this weakness, it is not 

uncommon for location of the maximum t-values to be expressed as 

the local maxima in large clusters. However, even within a single 

cluster there could theoretically be a single high t-value surrounded 

by very low values while in another region in space or time there 

may be a larger group of only slightly lower values which would be 

more statistically relevant. Therefore, although the procedure is 

statistically valid, an arbitrarily low threshold is likely to be yield 

results which are overly general and thus uninterpretable. Once 

again, since the TFCE approach enhances every data point by its 

supporting clusters, local maxima are retained in larger clusters. 

Thus even in large areas of significant data, local peaks are 

identifiable on the basis of their precise p-values with the significant 

cluster. Furthermore initially smaller values, but with large 

supporting clusters, may be enhanced to values higher than a single 

intense channel. This allows for a direct comparison of the different 

values within and between clusters of significant channel-sample 

pairs. 

 For low SNR, the low threshold cluster size approaches 

seem to be the most sensitive as the significance strength (Figure 
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13) does indicate that more channels were found to be significant 

around the time points described for high SNR. However, only a 

single cluster was found and thus the same issues apply with 

interpretation of the results as described for the high SNR results. 

Moreover, because significant differences were found as early as 

40ms, which likely reflect false-positives, there would be no 

statistical basis for deciding which of the channels could be 

interpreted as real experimental differences. In this case, neither 

the maximum statistic nor the higher cluster threshold approaches 

yielded any significant results since with a lower SNR, the t-statistic 

did not reach the required threshold. These issues from the cluster 

approaches raise two important points. Firstly, that the optimal 

threshold does not only depend on the type of signal to be 

detected, but, even if the type of signal to be detected is known, 

the SNR of the data will also play a role in determining the useful 

range of thresholding values. Secondly, although theoretically the 

cluster mass approach seems like a better alternative than simply 

taking cluster size, results from both approaches over multiple 

thresholds have often been essentially identical. This is due to two 

important steps in the process: firstly the initial threshold will yield 

the same clusters for both approaches; secondly, at least in this 

dataset there are essentially only quite small clusters (under 20 

channel-time pairs), or quite large clusters (over 300 channel-time 

pairs), and so the critical cut-off essentially just eliminates the 

smaller clusters were both size and mass will be under the 

threshold. Therefore, whether the cluster mass approach is an 

improvement over the cluster size actually depends on the 

distribution of cluster sizes and the amount of mass left in the 

cluster once thresholded. 

 In the secondary analysis on SPM's tutorial data using 

frequency analysis the TFCE analysis showed increased sensitivity 

over the SPM analysis by finding a larger frequency and time range 
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to be significant. It maintained its specificity however, assuming the 

SPM analysis can be taken as the ground truth, in that the point of 

maximum significance was equal in both analyses. The analysis was 

carried out on a single channel in order to directly compare the 

results with SPM, however, it is possible, and we recommend, to 

carry out the analysis on all the channels, time points, and a wide 

frequency range in order to fully explore the data and see whether 

the effects found are similar or even more pronounced in 

neighbouring channels. 

 The group data produced similar results as were published 

in the original paper (92). However, in the published analysis, 

researchers grouped channels into frontal and occipital regions and 

corrected for multiple comparisons using an arbitrary value of 15 

consecutive time points. Moreover, using the TFCE method, we are 

able to give channel and time peak information based on the 

location of the highest significance level between the two 

conditions, as opposed to the maximal difference in amplitude 

given in the original results. This is important as amplitude 

differences do not show how much variability the two conditions 

had, nor do they include information from neighbouring channels 

that may make a peak in a well supported cluster more significant 

than a higher isolated difference in a single channel. Furthermore, 

early differences at 100ms reported as significant in the paper were 

not found to even show a trend in our analysis. We think it is more 

likely that their significant finding there was likely to be a 

consequence of the multiple testing and insufficient correction 

since in the original data only a single channel (Oz), showed 

relatively high t-values between conditions in that early time range. 

However, the TFCE analysis did find a third significant time range in 

posterior channels later in the ERP which the original paper did not 

test for. Thus, using the TFCE method, much of the same 

conclusions could have been drawn but with more confidence in the 
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statistical results, more specificity in localising maximum effects in 

time and space, and without the risk of over-interpreting 

differences from a single channel. 

 Common to all approaches, except TFCE, is that potentially 

crucial information is being ignored in the data. Spatial information 

is neglected in the maximum statistic approach while for threshold-

dependent clustering approaches, information about intensity and 

the other thresholds is lost. The TFCE approach is thus unique as 

information from all relevant thresholds are included, as well as the 

actual value of the channel measurement. As a consequence the p-

values obtained do not need to be qualified by further measures 

and can be regarded as a direct measure of how confident we can 

be in the differences between signals. The key issue with the TFCE 

approach is not which information to include, but rather how each 

piece of information is to be optimally weighted. For these real 

datasets we have shown that the default values for our weighting 

parameters E and H provide good results for high and low SNR 

versions of the same dataset, as well as for frequency analysis and a 

group analysis. In showing its efficiency, any deviation from the 

default values would have to be strictly justified when using the 

method, unlike the choice for cluster-forming thresholds which 

cannot have an overall optimal value across various SNRs and signal 

types. 

 Lastly, with no further input requirements after 

specification of the ERP data and channel locations, the approach is 

automatic and generates a full set of results within a few minutes. 

Thus, exploration of the resulting structure can be done easily and 

intuitively without the explicit need to understand the details of the 

statistical process underlying those results. 
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Chapter 4 - Expansion to 
Complex Designs 

The previous chapters focused on single comparisons 

between two groups/conditions. However, modern research 

designs rarely just focus on just one factor and will often want to 

explore the role multiple factors may have in a certain experimental 

setting. Although a researcher may be initially tempted to run 

multiple single comparisons for each experimental hypothesis, this 

will lead to a new multiple comparisons problem and more 

importantly, will not be able to show how certain factors may 

interact with one another; or be able to control for the variation of 

other factors when looking at main effects
*
. Thus, for the TFCE 

approach to become useful in everyday experimental settings, a 

method which can analyse multiple factors requires exploration. 

First the theoretical aspects are considered when randomising 

across several factors with varying underlining designs. Then a 

shortened description of a research project is given in which those 

theoretical concerns are applied. 

4.1 Considerations for complex designs 

For large datasets containing several correlated 

measurements, as is typical in current EEG datasets, it is nearly 

impossible for the assumptions of parametric statistics to even 

come close to being acceptable. As already discussed, these 

                                                                 
* This may also be one of the reasons the conventional analysis has remained popular 
since many studies will run an ANOVA on their experimental factors and simply 
include a few channels and samples as additional factors in the general linear model. 
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assumptions should be questioned even when assessing the 

outcome of a simple t-test between two datasets. However, they 

become even further untenable once we introduce multiple factors 

into our statistical model. For this reason, inferential testing using 

the permutation method is also highly suitable in this area. 

For more complex designs such as an experiment testing 

for differences between two groups for two conditions (i.e. a 2x2 

mixed design), situation quickly arise where an exact permutation 

test may not be possible. Furthermore, it may not be clear just what 

the exchangeable units are in the design for specific hypothesis 

testing. For example, if the experimenter is interested in an exact 

test for a single factor, then only the units of that factor can be 

exchanged under permutation and the others must be left constant. 

In that case, each permutation for the second factor will result in 

identical values (since no randomisation is taking place) and thus 

inferences cannot be made about this secondary factor. In most 

cases however, a researcher conducts a more complex design in 

order to examine the main effects of the factors and any possible 

interactions between them. Here, exact tests are no longer possible 

since certain coefficients in the general linear model will always 

have to be estimated. However, one can still obtain very accurate 

estimations of each factor and interaction without the need for 

additional assumptions. 

The suggestion by Manly (93) is to directly permute all raw 

observed values and then randomly reassign it to the groups. That 

is, if we have a simple 2x2 between-subjects design with 5 people 

per group. The procedure would then simply be to take out all 20 

observed values, shuffle them, and then randomly reassign values 

to create identically shaped 2x2 cell blocks, yet with different 

participant data. For 2x2 repeated measures designs, the 4 

condition blocks should be exchanged within the same participant. 
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This is because with repeated measures, the conditions for each 

participant are bound to correlate and as such cannot be regarded 

as independent observations and are not exchangeable across 

participants. The same logic is applied for the permutation of data 

in paired t-tests. For mixed designs the same reasoning is applied 

and raw data permutation is a two-stage process. First, data for the 

repeated measure is exchanged within the individual participants, 

and then that participants’ data is exchanged across group labels. 

This results in full permutation whereby observations from a single 

participant remain together, albeit in a possibly different order, but 

their group labels may differ (94). In other words, the observations 

from any single participant will never end up as observations in two 

participants under randomisation. 

Anderson and colleagues (95–98), have taken a more 

complex approach based on a different perspective on the null 

hypothesis. In their view, it is that the error terms in the complex 

model should be equal across groups or conditions. Thus, it is the 

error terms that are the exchangeable units. Generally, for any 

ANOVA test under the permutation approach, the exchangeable 

unit is the denominator term of the F-ratio of the test. Strictly 

following this general rule provides an exact test for any individual 

term in the model. However, the exactness of one factor would 

mean fixing the errors of another factor in the model and a fixed 

term under permutation will result in identical randomisations for 

that factor; thus excluding the possibility of finding differences for 

that factor. Following this logic it is clear why no exact test exists for 

an interaction term since that would imply fixing all main effects, 

and thus leaving no units which can be exchanged. 

In order to test multiple factors and their interactions 

simultaneously approximate methods have to be used. Simulations 

have shown that the most powerful method for calculating 
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interaction terms is permutation of residuals which can control for 

the main effects of factors. That is, the full ANOVA model is 

calculated for the original data, and then for each individual 

observation, the residual is calculated by subtracting from its value 

the means of each factor and level, then adding the overall mean. 

This is essentially equivalent to finding out how much data remains 

unexplained from each observation if the original model is correct. 

The residuals are then permuted and an empirical null distribution 

is calculated. Although strictly approximate, this method of 

permutation of residuals is said to be ‘asymptotically exact’ since 

although the direct influence of the main effects are not kept 

constant, there variability is kept fixed by removing their mean 

values. Thus these tests are not approximate in the same way that 

parametric tests are said to be approximate. 

However, permutation of residuals, by controlling certain 

main effects, does not then provide significance testing for them. 

Anderson (98), argues that testing for main effects only makes 

sense when the interaction is non-significant. There, since the 

interaction would have been shown to be non-significant, it’s term 

can be removed from the model and exact main effects can be 

tested. This may be plausible for a single dependent variable, but 

for mass univariate statistics, as in our EEG data, interactions will 

not be significant for the entire dataset and it will always be 

necessary to see if for those channel-samples pairs factors’ main 

effects are. Moreover, in mixed random factor designs, it may of 

interest whether main effects are significant, over and above any 

more specific interaction effects. 

Therefore, for a more exploratory analysis, where both the 

significance of main effects and their interaction(s) are of interest, 

the only available solution is to run a permutation of the raw 

observations as discussed earlier. This procedure has been shown to 
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retain strong control of false positives over most data types and 

experimental designs, but can often lack power to detect real 

effects (94, 98). In this sense, we are edging on the side of being 

overly conservative using this permutation approach; which 

although not optimal is the more preferable error type to make in 

science. For experimental designs where a single factor is of primary 

interest, and other factors are introduced to control for some 

known influence, permutation of residuals may provide exact 

control of false positives and at the same time provide the most 

sensitivity to effects.  

4.2 Posner Paradigm 

 One of the most popular tasks for examining the orienting 

of attention was designed by Posner and colleagues in the 1980s 

(99–102). In its most basic form, the task is essentially one of 

reaction time where a participant is asked to respond as quickly as 

possible to a target when appearing usually in either the left or right 

visual field. Several factors have been examined which has 

significant effects on participants reaction time. Two of the most 

investigated factors are the influence of a cue-event prior to the 

presentation of the target, and the time interval between the cue 

presentation and the subsequent target (stimulus-onset-

asynchrony; SOA). As expected, reaction times tend to be faster for 

validly cued trials and longer SOAs. However, when a re-orienting 

event takes place between initial cue and target, an effect known as 

inhibition-of-return (IOR) is observed. In IOR validly cued trials tend 

to display a slower reaction time than other trial types for longer 

SOAs. This is thought to be caused by the bias of attention away 

from previously explored locations but is by no means the 

conclusive interpretation (103, 104). Furthermore, studies have 

found significant effects on reaction times when cue where either 
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explicitly or implicitly directing attention. Practically, this aspect has 

been manipulated in two ways: either the cue directs attention 

implicitly by being presented at the target location or explicitly by 

central directing cue such as an arrow; or the likelihood of cue-

target location coherence is altered such that the cued location 

could become associated with the opposite target location. 

The paradigms effects are typically assessed by reaction 

time or error rates but since multiple, possibly parallel, processes 

must take place between visual stimulus and motor response, we 

need more than behavioural data to disentangle the time course of 

the behavioural profile. EEG’s high temporal definition, and 

increasing spatial capabilities, makes it a useful tool to delineate the 

processes involved in such a task. Several EEG studies have already 

been conducted using variations of the task (see (105) for a review 

of studies prior to 2006; (106–109)). The issue is that the EEG 

studies conducted have only explored one or two factor 

manipulations of the paradigm and subsequently used inaccurate 

statistics to test the results. Consider that the most recent ERP 

study of the IOR effect was one of the first to examine cue-locked 

ERPs and was considered novel in its approach by examining three 

different time windows of 10 author-selected components of 

interest from ERP (109)
*

. Statistically, the authors employed 

multiple one-way repeated measures ANOVAs (with no explicit 

control for multiple-testing), for each component and XYZ location 

of the maximal amplitude with the time window as the only factor 

tested. Furthermore, source reconstructed maps were created for 

                                                                 
* Published in the journal Brain Topography; impact factor (2010) of 3.288; a 
relatively high value for this fairly specialised journal. 
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each time window with no statistical analysis of the results 

presented
*
.  

Here, we aimed to assess several factors simultaneously 

using reaction time and accuracy measures as well as high-density 

EEG recording. The paradigm was as chosen to be as close to the 

original one set out; but able to accommodate the desired factors. 

Therefore, we take a more open exploratory analysis technique to a 

well-established and researched paradigm with the idea of 

reanalysing and confirming previously made hypotheses yet at the 

same time be open to the discovery of novel findings in the data-set 

made possible by valid statistical methods which remain highly 

sensitive to different types of variability in results.  

4.3 Method 

4.3.1 Behavioural Task 

 Fourteen, healthy, right-handed, male participants (mean 

age = 25.4, SE = 0.98), completed a modified version of the classic 

Posner paradigm . Participants were paid for their time, and gave 

written consent. Participants were seated comfortably in front of a 

24” LCD monitor (60Hz), at a distance of approximately 50cm. The 

task was fully programmed in the Psychtoolbox extension (version 

3; freely available at psychtoolbox.org) to MATLAB (110). As 

illustrated in Figure 15 below, participants began each trial in the 

task by fixating on a cross in the middle of the screen. Two empty 

squares then appeared to the left and right of the fixation cross at a 

distance of 40cm (viewing angle on average of 84.7°). In 20% of the 

                                                                 
* The article is recommended as an illuminating example of how complex some EEG 
analyses can become and still lack in validity. 
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trials, deemed neutral trials, a target ‘x’ directly appeared in one of 

the two squares. However, in the majority of the trials, participants 

first saw a cue which could indicate where the target would 

subsequently appear. Valid cues, which accurately predicted the 

target location occurred on 75% of cued trials. The cue could take 

one of two forms: either the cue was presented externally, when 

the square’s border would thicken; or internally with an arrow just 

above the fixation cross pointing to a square. For cued trials, the 

stimulus-onset-asynchrony (SOA), was either 150ms (short) or 500 

ms (long). 400 total trials were presented to each participant, with a 

short break of 15-30 seconds after every 50 trials and a longer 

pause after 200 trials. All trials were pseudo-randomised in that the 

amount of each trial type, including left and right targets was fixed 

but the order of presentation was randomised for each participant. 

4.3.2 EEG Recording and Analysis 

EEG was measured from each participant using a 125-

channel recording net in a geodesic arrangement. Signals were 

amplified and digitally sampled at 5000Hz using the Brainamp DC / 

MR amplifiers (BrainProducts). Using Analyzer2 (Brainproducts), the 

data was bandwidth filtered between 0.7Hz and 40Hz, 

downsampled to 250Hz, and re-referenced to the average activity 

over all channels. EOG artifacts from blinking were corrected using 

the Graham and Coles algorithm by constructing virtual VEOG and 

HEOG channels using a combination of the frontal electrodes. 

[Three] participants had severe EKG artifacts, primarily over 

posterior electrodes. An independent-component-analysis was 

conducted over the entire dataset was used to find, and subtract, 

components most loaded with the EKG artefact. Any further 

artifacts were semi-automatically marked under strict criteria 

(maximum voltage step 25µV/ms; maximum allowed total 

difference of 75µV in 200ms; maximum and minimum amplitude of 
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+/- 150µV; low activity of 0.5µV in 100ms). Those channels and time 

points were excluded from further analysis. Event-related potentials 

were calculated separately for both the cue-onset and the target-

onset. Each ERP was baseline corrected using the mean activity of 

the period 200ms prior to the event. 

Figure 15 – Basic overview of the Posner Task. Participants were required to keep 
their eyes on the fixation point at all times. External (thicker frame) or internal cues 
(an arrow), were presented to indicate the likely presence of the upcoming target 
(75% of cued trials). The target would appear either 150ms (short) or 500ms (long) 
after the cue. In 20% of all trials no cue was presented. 

 

 All channels and time-points were then statistically 

analysed using non-parametric methods following a threshold-free 

cluster-enhancement in order to enhance the statistical signal that 

were well supported by neighbouring channels and time-points. The 

default TFCE settings of E = 2/3, H = 2, were used as well as 2500 

permutations to form the null distribution. The method has strict 
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control for multiple comparisons and therefore a threshold alpha 

value of 0.05 was used to determine significance. 

4.4 Results 

4.4.1 Behavioural: Reaction Times 

 Reaction times that were indicative of false starts or missed 

trails, under 100ms and above 1s, were marked as incorrect and 

subsequently left out of the reaction time analysis. Kolmogorov-

Smirnov tests of normality were calculated for each dependent 

variable and all were found to be normally distributed (mean 

significance= 0.87, sd= 0.14). Reaction times for correct trials were 

submitted to a single repeated measures analysis of variance 

(ANOVA). The ANOVA was conducted with four within-subject 

factors: trial-validity (valid, invalid, and neutral); cue-location 

(external, internal); SOA (150,500); and target-side (left, right). Cue-

dependent factors for neutral trials were included in the statistical 

analysis by design but ignored in further processing. Mauchly’s Test 

of Sphericity found no significant deviations on any factor with the 

minimum Epsilon value found being 0.838. Results for the statistical 

analysis of each main effects are presented in Table 4. 

 Participants responded with a mean of 352ms (SE= 4ms). 

There was no interaction between all four, or any three of the 

factors. There were two separate interactions found between SOA 

and trial-validity (F2,26= 4.756, p= 0.017) as well as SOA and cue 

location (F1,13= 15.742, p= 0.002). For the SOA, trial-validity 

interaction, the main effects remained the case but it seemed as 

though that participants benefitted even further from longer SOAs 

in invalid trials (T13= 2.341, p= 0.036; mean difference= 15ms, SE = 

6ms). That is, the large difference between valid and invalidly cued 

trials for the short SOA was dramatically reduced. Although this is 
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not strictly the general finding of inhibition-of-return, it is consistent 

with the effect. For the SOA, cue-location interaction, main effects 

still hold true, but the benefits of a longer SOA seemed to be 

attenuated for externally presented cues (T13= 4.022, p= 0.001; 

mean difference= 15ms, SE= 4ms). 

Table 4 – Summary of each factor and level for reaction time (RT) and its standard 
error (SE); as well as behavioural accuracy (%). F-Values and there corresponding p-
values are also given for each factor. Significant p-values are highlighted in bold. 

Factor Level RT (SE) F / p % F / p 

Validity 

Valid 318 (4) 
33.280 
>0.001 

98.33  
13.55 
0.003 

Invalid 361 (6) 95.89 

Neutral 376 (7) 99.82 

SOA 
150 365 (5) 58.082 

>0.001 

98.00 0.005 
0.942 500 339 (4) 98.04 

Cue Type 
External 356 (5) 5.295 

0.039 

98.08 0.06 
0.804 Internal 348 (4) 97.96 

Target 
Side 

Left 362 (4) 14.478 
0.002 

98.25 0.79 
0.389 Right 341 (5) 97.78 

4.4.2 Behavioural: Accuracy 

 Participants rarely committed errors (mean correct 

percentage= 98.0%, SE= 1.3%), which included false starts or late 

responses, not only incorrect target-side selection. Due to the 

nature of the variable, most factors showed significant deviations 

from sphericity, and although the Epsilon values remained fairly 

high, the lower-bound correction was taken as a conservative 

estimation.  

 For the significant main effect of trial validity for accuracy 

post-hoc Wilcoxon Signed Rank Tests indicated that all levels were 

significantly different from one another (CueInvalid vs CueValid : Z= 
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2.622, p= 0.009; CueInvalid vs CueNeutral : Z= 2.938, p= 0.003; CueNeutral 

vs CueValid : Z= 2.271, p= 0.023). 

 Here, a three-way interaction was found between SOA, 

cue-location, and target-side (F1,13= 6.195, p= 0.027). The largest 

difference we could find between the factors was, between left and 

right targets between externally (left side dominance of 2.3%, SE= 

1.3%), and internally presented cues (right side dominance of 1.6%, 

SE= 0.7%), only at an SOA of 150ms. Another Wilcoxon Signed Ranks 

Test confirmed this difference (Z= 2.318, p= 0.02). 

4.4.3 ERP: Target Side 

In order to explore whether the highly significant 

behavioural differences for target-side were reflected in brain 

activity, this factor was examined on its own using the simple paired 

t-test version of the TFCE approach. The ERPs were taken only from 

neutral trials so that no cue events would contaminate the ERP of 

the target presentation. Figure 16 gives an overview of the results 

of this comparison. 

Three separate clusters of significant results were found 

which highlight differences between the ERPs. The largest cluster 

spanned 190 channel-sample pairs which included 26 unique 

channels and ranged from 132ms to 200ms. The most significant 

point within the cluster occurred at 152ms over channel E66, 

located left-posterior (T13= 11.69, p= 0.0004). Upon examination of 

the ERP the likely source of the difference was that targets 

presented to the right visual field had an earlier peak by 32 ms; 

moreover, the amplitude of the peak was also substantially larger 

by approximately 2 µV. The second largest cluster was essential the 

mirror-image of the first in terms of topography. It spanned 84 

channel-sample pairs which included 13 unique channels and 

ranged from 144ms to 204ms. The peak in the cluster was found at 
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channel E95, right-posterior, at 176ms (T13= -6.46, p= 0.0028). The 

source of this difference in the ERP was that targets presented to 

the right visual field showed a sharp positive deflection which was 

not apparent for left targets.  

Figure 16 - Analysis results of differences between targets presented to the left 
versus to the right for neutral (no cue) trials. Clusters are calculated after the 
analysis and represent connected significant channel-sample pairs. 

 

  
 

The third, smaller cluster of significant results spanned only 

29 channel-sample pairs over just 6 channels from 36ms to 72ms 

after target presentation. The cluster was located in the central 

region, slightly right and anterior to the central electrode. This 

difference peaked at 56ms on channel E111 (T13= 6.82, p= 0.0200). 

Examination of both ERPs indicated that these early differences 

were the result of differences in signal structure. Left targets 

showed a clear negative potential at 160ms whereas for targets 

presented on the right, this potential was much present earlier but 

much more varied in latency across subjects. Thus average ERPs 
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showed an early broad potential for right targets and a sharper 

potential at a later latency for left targets, resulting in the early 

significant differences. 

The symmetric topographies would suggest equal but 

opposite differences for left and right targets. However, targets 

presented to the right visual field, left hemisphere, showed earlier 

latencies and stronger amplitude ERPs over left-sided electrodes; as 

well as an additional potential, not present for left-targets, over 

right-sided electrodes. These results are consistent with the right-

target advantage for reaction times. 

4.4.4 ERP: Cue Location vs. Target Side for SOA of 500ms 

The previous analysis showed that presentation of the 

target to the left or right side showed significant differences in 

individual ERPs. To further examine whether a similar effect could 

be found for presentation of the cue, a 2x2 TFCE-ANOVA was used 

to assess the main effects of cue-location (external or internal) and 

target side (left or right), as well as any interaction between the 

factors.  

For the main effect of cue location, analysis found three 

clusters of significant results. The largest significant cluster spanned 

824 channel-sample pairs over 65 unique channels and ranged from 

268ms to 468ms. Its peak significant point occurred at channel E91, 

a right posterior parietal channel at 340ms (F1,13= 73.17, p= 0.0014). 

Examination of the corresponding ERP showed that internal cues 

resulted in an evoked-potential which was not present for external 

cues. The second largest cluster spanned 232 channel-sample pairs 

over 35 unique channels and ranged from 148ms to 212ms. The 

highest value in that cluster occurred at channel E13, an anterior-

central channel at 168ms (F1,13= 67.03, p= 0.0026). The difference 

seemed to be caused by a latency shift with internal cues processed 
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approximately 30 ms earlier than external cues. The third cluster of 

significant points spanned 83 channel-time pairs over just 13 unique 

channels and had a time range similar to the previous cluster from 

152ms to 204ms. The peak significant point was found at channel 

E50, left posterior-occipital, 172ms after the cue presentation (F1,13= 

117.26, p= 0.0012). The values here reflected both differences in 

latency and amplitude of a negative deflecting ERP. Internally 

presented cues showed reduced latency and significantly higher 

amplitude (approximately 50ms earlier and 1.5 µV more negative). 

Target side did not show any significant differences prior to 

the onset of actual target at 500ms. After the presentation of the 

target, whether the target was left or right showed a significant 

effect with almost identical characteristics as described for neutral 

trials (see 4.4.3 These two factors showed no points of interaction. 

With no interaction effect, or specific target side effect 

directly after the presentation of the cue, we can conclude that 

there is no evidence for preferential processing for cues to either 

side. Thus the target side effects described for reaction time and 

neutral ERPs occur only at the time that the motor response is 

actually required. The three-way interaction of SOA, cue-location 

and target side for reaction time however remains unaccounted for 

by the ERP findings. 

The reaction time differences for internal and external cues 

can be accounted for by these ERP findings; specifically, the 

significant interaction between SOA and cue-location for reaction 

times. Here we found earlier latencies with stronger amplitudes for 

internally-presented cues which fit well with overall better 

performance for those types of cues in participants’ reaction times. 

Moreover, the significant differences between cue-types occurred 

after around or after 150ms; the time at which the target would 
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have appeared for the shorter SOAs. Therefore, the longer SOAs of 

500ms allowed for the full processing of these two cue conditions 

which lead to increased behavioural differences specifically for that 

longer SOA.  

4.4.5 ERP: SOA vs Trial Validity 

Reaction time measures indicated a significant interaction 

between SOA and trial-validity, consistent with finding of inhibition-

of-return even though no explicit reorientation of attention had 

taken place. In order to investigate the possible neurophysiological 

underpinnings of this effect, a 2x2 TFCE-ANOVA analysed both these 

factors and their interaction for target-locked responses since a 

trials validity is only determined at target presentation. The main 

effect of SOA is however essentially uninterpretable as the target-

locked ERP would have its baseline at different times in respect to 

the cue event. As predicted then, the main effect of SOA began to 

show differences from 0ms to about 500ms post event when it is 

reasonable to assume the cue-locked activity specific to SOA had 

ceased. 

A single significant cluster was found for differences in trial 

validity spanning 330 channel-sample pairs over 41 unique channels 

and ranging from 184ms to 300ms. The cluster was primarily 

located over right central channels and had its most significant peak 

at channel E103 232ms after the target appeared (F1,13= 68.70, p= 

0.0024). The difference reflected an earlier ERP latency for valid 

trials of approximately 40ms. A latency shift this late in the ERP 

would indicate some change of attention had already taken place 

for the invalid trials, but this was not reflected in any earlier 

significant differences for this comparison. 

Both SOA and trial validity showed a significant interaction 

for target-locked ERPs. A single significant cluster of results was 



 

 109 

 

Complex Designs 

found spanning 95 channel-sample pairs ranging from 308ms to 

350ms. The clusters peak was located at channel E104, right-

central, at 312ms (F1,13= 60.03, p= 0.0056). The interaction probably 

stemmed from two distinct interactions in the data. The first 

interaction was likely that only the ERP response for invalid cues 

presented at an SOA of 150 had a pronounced delay of 

approximately 40 seconds, compared to the three other ERPs in the 

design. The second possible source for the interaction effect was 

that in the latter portion of the significant cluster, validly cued 

targets presented with an SOA of 500ms had reduced peak 

amplitude of approximately 1 µV in comparison to the three other 

ERPs. 

4.5 Discussion 

Although it is not the purpose here to discuss these results 

in the larger context of visual attention; the findings are indicative 

of real differences that have not yet been explored in other studies. 

The reason, at least in part, may be due to a lack of appropriate 

statistical methods. In particular, the significant results for 

interactions between factors show that various serial analyses of 

factors on their own will lead to misinterpretations of the data. 

Even though the current model only supports the analysis of two 

factors we were able to explore multiple factors (albeit with 

multiple tests), in order to provide new evidence. Importantly, 

despite the increased complexity, the results can still be explored in 

a fundamentally understandable way without having to resort to 

biased techniques. 
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Chapter 5 - Conclusion and 
Future Perspectives 

5.1 Valid 

A method’s validity is its most crucial feature. Any major 

flaw in a method’s theoretical underpinnings and one is able to 

completely discredit the results without ever even having to see 

them. With a solid approach that leaves little room for manipulation 

or bias, the output of the procedure can be trusted. Thus any 

critique of the research hypotheses will have to be related to the 

actual results themselves or their interpretation. 

The TFCE method ensures its validity by analysing all data 

points available in the ERP and weighing their importance without 

bias. There is therefore no need to speculate about possible effects 

prior to recording the data, and limit the scope of the results. TFCE 

also avoids having to make several assumptions about the data’s 

distribution and structure by using the permutation approach for 

inferential statistics; assumptions which are increasingly unlikely to 

be met in modern EEG datasets with a multitude of recorded 

channels and time points of potential differences. Although in the 

case of more complex designs, there is an increase in the flexibility 

of the approach, this is no more than any other approach when 

confronted with multiple factors. Moreover, TFCE avoids the use of 

arbitrary settings such as a cluster-forming-threshold, or definitions 

of channel neighbours which are possible sources of bias in the 

procedure.  In order to run an analysis all that is required is the ERP 

data itself, and sufficient information about the location of the 

channels measured.  
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5.2 Sensitive 

A valid method may guarantee that the results should at 

least be explored by others, but if the method is not sensitive 

enough to differences then there won’t be any result to discuss. 

Therefore maximising a method’s sensitivity, while maintaining a 

high standard of validity, is the logical next step in the process. The 

most used permutation method for EEG data has been the 

maximum-statistic approach; which has been shown to have the 

strongest control over the false positive rate, but also is the least 

sensitive. The TFCE approach also uses a maximum-statistic 

approach but enhances the data prior to inference testing by 

including information from neighbouring clusters to increase overall 

sensitivity. 

It is nearly impossible to predict what kind of signals will be 

present in a dataset prior to collecting the data since small changes 

in source location will heavily influence the scalp topography and 

signal intensity. Furthermore, even in just a single ERP dataset, 

there are likely to be different types of signal present since activity 

closely synchronised with the triggering event will tend to have a 

more focal pattern in time; whereas secondary activity related to 

the event will be more broadly distributed in time. Both the cluster 

size and mass approaches have been shown to have better 

sensitivity than the maximum-statistic approach but do so at a cost 

to method validity. Moreover, by setting a single threshold, the 

methods are generally only sensitive to a specific range of ERP 

signals. TFCE on the other hand uses balanced weighing parameters 

for information about a data point’s intensity and neighbourhood 

and is therefore sensitive to the many kinds of signal types present 

in EEG data. Information about the surrounding clusters of data is 

automatically taken over the entire signal, not just at a single 

arbitrary threshold. At the end of the process intense focal signals 
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are enhanced to levels which make the TFCE values directly 

comparable to more dispersed signals.  

Sensitivity can also be increased by including further 

information into the analysis. As we have seen, TFCE can handle 

complex designs where an additional factor in the experimental 

design may account for some of the random variance in the primary 

factor of interest. Likewise, fixed covariates such as age or gender 

may also reduce variation in the ERP. Inclusion of non-fixed 

covariates like the results from the behavioural portion of the 

experiment (e.g. reaction time), may also predict variation of the 

ERP and would therefore act to increase sensitivity to the 

underlying signal. Since the initial-statistics are based on the general 

linear model, it is a straightforward process to include these 

additional explanatory factors into the analysis. 

5.3 Interpretable 

From a purely theoretical stand-point, a method’s validity 

and sensitivity are the only two crucial aspects. Yet if this were also 

true from a practical stand-point, then it seems unlikely that the 

conventional modes of analysis would still be so common. After all, 

the method is a tool which should turn a large set of data, into a 

clear collection of information. The results should provide a clear 

picture of the overall outcomes of the experiment, and at the same 

time be able to answer specific questions. 

A feature of the TFCE approach is that the output matrix of 

p-values is identical in shape to the input matrix. This matrix can 

then be viewed from different perspectives in order to visualise the 

data. For example, in the case of a specific hypothesis about a 

channel or time point, the corrected p-values can simply be taken 

from the corresponding points in the matric. Or, for a more 
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exploratory analysis, the summation of the negative log of the p-

values gives a timeline of significance over the entire ERP. Specific 

time samples can then be selected and scalp topographies displayed 

showing the localisation of the effect. By combining the timeline 

with topographies from peak significance points one could give a 

general overview of the entirety of the results in a single figure. 

Thus, even if the research question was regarding a specific feature 

of the ERP, it would still be worthwhile to conduct a full-analysis 

since this would: put the specific feature into perspective (e.g. 

onset, range, and peak of the feature); provide far more confidence 

in the effect when its corrected over all channels and time points; 

and allow the research community to explore other hypotheses 

using your results rather than having to collect entirely new data.  

 A further attribute of TFCE is that the resulting p-values 

actually represent the amount of trust we should place in that 

difference and need no extra qualification to be understood in 

context. Here, two p-values, even when they are representative of 

very different kinds of signals are directly comparable. Often with 

other methods, a p-value may be given with additional information 

about its actual intensity or the significance of surrounding 

structures. In SPM for example, it is commonplace to provide the 

significance value of a specific feature of the ERP in terms of its 

uncorrected, family-wise error corrected, false-discovery rate 

corrected, and/or cluster-level significance level. This can lead to 

data which is non-significant with some corrections being reported 

as significant because of its significance in some other measure (this 

most commonly happens with the uncorrected p-value being 

reported with some weak justification). With the TFCE approach, 

the inference statistics are calculated on data which already 

incorporates all this information into a single value which can be 

then directly reported. 
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5.4 Methodological Limitations 

What follows is a description of three theoretical 

drawbacks to the TFCE method which are described below. These 

limitations are considered inherent to the procedure and hence 

their effects should be understood and accepted. There are further 

limitations of the procedure which are not inherent, and can be 

improved upon which are discussed in the later section 5.5  

5.4.1 Bipolar deflections of a single source 

Apparent in almost every EEG dataset is that for every 

positive deflection found, there is a corresponding negative 

deflection. This is especially apparent for signals created from a 

single dipole (see section 2.3 for simulated dipoles and their scalp 

topographies). Therefore, the topography of a single source signal 

will usually be defined by two clusters of data; one positive and 

another negative. The TFCE approach does not take this information 

into account and treats each cluster of results as independent 

evidence for a significant signal source. It may therefore be argued 

that any method which involves improving sensitivity through data 

clustering is ultimately flawed and should not be used. 

Clearly, we feel that this strong opinion is unwarranted; 

especially given the results presented for both simulated and real 

datasets of varying designs and underlying physiology. Furthermore, 

this argument could be considered a fundamental issue in any EEG 

analysis method; especially to those methods that do not examine 

the entire dataset for significance. What is required is caution when 

interpreting significant clusters as representative of significant 

activity in the cortical area underlying the significant effect on that 

channel-sample pair. A tentative solution to this issue may be to 

first estimate the underlying source activity and then perform a 
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TFCE analysis on this larger 4-dimensional dataset (for a discussion 

on benefits and pitfalls of analysis on source reconstructed data see 

section 6.4 ). 

5.4.2 Reference dependent 

 A crucial step to any EEG recording and subsequent 

analysis is the definition of the reference to which all activity is 

compared to. All potentials found after pre-processing are by 

definition potentials in relation to some reference. Historically, one 

of the most common references has been to use the activity over 

the mastoid bone just behind the ear. More recently, with the 

increase in the number of electrodes, each electrode is referenced 

to the average activity over all recorded electrodes, which should 

summate to approximately zero. Although arguments can, and have 

been made for and against the use of certain electrode montages, 

the shape of ERP-waves is highly reference dependent. That is, 

depending on the reference electrode(s) chosen, the shape and 

intensity of individual channel waveforms can change completely. 

For example, alpha activity (rhythmic 8-12Hz), can be seen over all 

electrodes using mastoid references but only over occipital sites for 

average reference montages; this is because the alpha activity is 

actually being measured at the mastoid reference as well and then 

projected by differentiation to all sites which are then referenced to 

it. Importantly the overall shape of the topography does not change 

and selecting another reference is akin to changing the sea level, 

while the underlying landscape remains constant (this is the key 

feature and argument for proponents of microstate analysis 

described in section 1.2  

 Imagine for instance a simple topography consisting of a 

single peak (or hill), and a completely flat baseline topography. 

Shifting the distance between the two topographies could result in 
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a difference of just the peak when the flat parts are aligned, or a 

difference of almost the entire field except for the peak if the 

baseline is shifted upwards. For most waveform analysis that either 

look at just the peak differences between the waveforms 

(maximum-statistic), or how large the distribution of differences is 

(cluster-size), a different reference can completely 'make or break' 

the result structure.  

 For TFCE, this is far less dramatic since both differences in 

waveform intensities and cluster sizes are looked at. Such that, if 

the values of E and H are appropriately configured to take the best 

of both topographical features, any loss of intensity differences, by 

varying the reference, is compensated for to some extent by some 

proportional increase in cluster sizes. In other words, references 

that eliminate differences in one channel will inevitably create 

proportional differences in other channels. Moreover, the use of 

any other reference montage other than the 'average-reference' 

has become increasingly uncommon; even the proponents of the 

topographical method, argue for the use of this reference 

procedure for their actual statistical waveform analyses (31, 32, 

111). With a sufficient number of electrodes the average reference 

has been shown to be a good approximation to the zero voltage 

line, and hence, under those conditions, a relatively good 

approximation to reference-free measurements whilst still retaining 

information on relative strength of the signal (112). Thus, although 

the TFCE method is affected by its reference dependence, the effect 

has far less of an impact on the statistical analysis and more on the 

inferences that can be made about specific differences at certain 

channels. 
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5.4.3 Recording parameters influence cluster sizes 

 For fMRI data, the structure of the input is relatively fixed 

in terms of image dimensions. Data from ERPs can vary widely in 

terms of the number of channels recorded and analysed; the time 

range included in the analysis, both baseline and after the event; 

and the sampling rate of the ERP. Cluster extent is calculated as an 

absolute value from the input. Thus, if our data was down-sampled 

to 500Hz rather than 250Hz, or if we used a 256 channel camp 

rather than 128 channels, we would ultimately obtain cluster-sizes 

twice as large.  

This may, at first glance, seem like a major flaw in the 

analysis process; however there are two reasons why it has little 

effect on the results, not only in terms of validity but also the actual 

obtained significance values. Although the actual TFCE values may 

be altered, the shape of the data remains unchanged. An increase 

or decrease in the sampling rate scales all cluster sizes equally. 

Thus, we essentially just multiply the TFCE values by a scalar. 

Secondly, because we base our inferences on permutations of the 

same scaled dataset, the cluster sizes of the permutated datasets 

will also be multiplied by the same scalar. Thus, our original TFCE 

values and permuted TFCE values still maintain the same 

relationship to each other and the p-values would be kept 

constant
*
. Clearly, sampling rate will have a larger influence on the 

analysis results once it changes the shape of the data at quite low 

rates. Yet this is the case with every analysis method, and is 

generally avoided in the pre-processing stage. In any case, we 

recommend a sampling rate that is several multiples of the highest 

                                                                 
* This was empirically tested on simulated source 6 by up-sampling the original 
dataset by double its original sampling rate. Calculated p-values showed only minor 
variation due to the randomisation of permutation process. 
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frequency inspected in the data. For most standard EEG datasets 

this minimum sampling rate is likely to be around 200Hz. 

5.5 Future work 

We believe the TFCE approach is the most optimal method 

currently available for analysis of EEG datasets; in particular for 

open discovery of significant differences in large datasets when a-

priori hypothesis are untenable. Moreover, the TFCE approach is 

designed with large datasets in mind; common to modern research 

in the field. However, there are still several aspects of the process 

which have room for improvement or potential ideas that require 

further investigation. 

5.5.1 Initial-statistics 

The t-statistic is automatically taken as the default initial 

statistic and as a result the open choice of initial-statistic is often 

overlooked in analyses. Although the t-test may be the most 

common and optimal measure of differences between two 

datasets, there may nonetheless exist further measures which may 

be more of interest to the EEG researcher. Since the permutation 

approach empirically calculates the null distribution from the data, 

it is open to whichever measure of differences the experimenter 

chooses; without any necessary alterations to other aspects of the 

process. 

Currently implemented in the algorithm is the possibility to 

directly calculate the differences in either means or variance 

between the two datasets in question. This was implemented 

because the t-test is sensitive to both types of differences and a 

significant result without further exploration may be attributed 

purely to differences in variability when the means could be 
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identical. Thus, using only the direct measure, one would be able to 

unequivocally determine whether significant comparisons were due 

to either differences in means or variance, or both. 

Other measures have also been used in previous research 

(such as Hotellings T2 (75)). These may well be worth investigating 

as to whether they provide more accurate results for EEG datasets. 

Caution must be taken when examining several options for the 

initial-statistic in that it may provide too much flexibility for the 

researcher to experiment with, leading to an overall increase in 

false positives. In the end clear guidelines must be determined 

before allowing a truly open choice of initial-statistics. Ideally the 

choice will be determined by the data itself, which would allow for 

an automatic selection of optimal statistic by some algorithm. 

A further expansion to the initial-statistics concerns the 

way the statistics are calculated in the first place. The first 

improvement that can be made is, rather than only use the variance 

from each channel-sample pair to calculate statistics, the variance 

can be pooled to give a more accurate estimate of the parameter. 

That is, each channel-sample pair’s variance is taken partly from its 

own variance and partly from its neighbouring channels and time 

points. This will have the effect of reducing the influence of special 

artefacts in one of the contributing datasets (e.g. a single, quite 

variable participant) for a specific channel-sample. Furthermore, 

sphericity (the equality of the differences in variance), will hold true 

for the dataset as a whole but not necessarily for individual data-

points. Thus, pooling variance will improve sphericity in the dataset 

and create more accurate statistics that are more representative of 

the real differences in the data.  

The second overall improvement would be to automatically 

calculate group average statistics. That is, even when looking for the 
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differences between conditions or groups, it would be good to 

already know which channel-sample pairs are significantly different 

from the baseline zero. In other words, which parts of the ERP are 

actual potentials and which peaks and valleys are just random noise 

left from an imperfect averaging process. This could then be used to 

further interpretation of the subsequent results for conditions or 

groups. 

5.5.2 Expansion of designs 

Currently, the TFCE algorithm is able to efficiently handle 

any single factor design using the appropriate t-tests for two groups 

or conditions; in the case of multiple groups, a one-way ANOVA; or 

a repeated measures design. The previous chapter demonstrated 

the method is also capable of handling two factors simultaneously, 

both repeated measures. Furthermore, scripts have been written 

and informally tested which can analyse any type of two factor 

design; whether both factors are independent observations, or a 

mixed design. However, those are currently limited to designs with 

the same number of participants for all groups
*
. 

Work is already in progress which extends the analysis 

principles to include designs with an unbalanced number of subjects 

per level by using weighted means in the ANOVA. In addition, n-

factor designs may be run using a beta-version but the 

generalisation process to more than two factors currently comes at 

a considerable loss of processing speed. Concurrently, only 

permutation of the raw data is possible; however as argued in 

section Chapter 4 permutation of the residuals in the linear model 

                                                                 
* As weighted averages take a considerable amount more time to calculate, thus 
dramatically reducing the efficiency of the entire permutation process. It should be 
noted though that repeated measures analysis will always have an equal number of 
observations by definition. 
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may be a more valid and sensitive approach. Therefore, the option 

to select permutation method for more complex designs should be 

explored. 

Future implementations may also include non-parametric 

versions of the initial-statistics tests such as the Mann-Whitney-U 

test for two sample designs; the Kruskal-Wallis test for an 

equivalent to the one-way ANOVA design; or the Friedman test for 

more complex designs without the need for approximation of the 

interaction term. Since inferences are made by the permutation 

approach, the non-parametric test versions do not imply that the t-

tests and ANOVA versions are invalid. Rather, they should be used 

to produce further alternatives to the initial-statistic should the 

researcher feel that those tests do not accurately represent the 

data. As with the warning for initial-statistics, alternative 

approaches should be a free choice to the user, but rather 

automatically taken by the algorithm once certain aspects of the 

data are calculated. The exact decision tree necessary should be 

thoroughly justified both theoretically and empirically using 

simulated data.  

5.5.3 Data smoothing 

Smoothing raw data prior to analysis is fairly common 

practice in neuroimaging, especially in fMRI analysis. A 3D guassian 

kernel of a particular size is usually used to smooth the fMRI image. 

This will have the effect of improving SNR by reducing the impact of 

randomly distributed activations due to noise. In the introductory 

paper on TFCE (81), it was shown that although the implementation 

of TFCE on the raw image performed fairly well, when combined 

with a smoothing technique the results were dramatically 

improved.  
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Smoothing an image can be seen to be an equivalent to 

using a low-pass filter on the temporal domain of EEG. In section 2.6 

we demonstrated improvements in signal detection after using 

temporal filters on simulated EEG data; but currently there is no 

easy method to also smooth data in the spatial domain. SPM is 

capable of spatial smoothing because they use interpolate the EEG 

data to form continuous 3D images. The drawbacks of this 

interpolation are discussed later in 6.3 but suffice to say that the 

costs of the procedure are too high to be a viable option. However, 

given the way TFCE calculates neighbouring channels (described in 

6.3.1 the information could also be used to smooth data in the 

spatial domain as well as in the temporal domain. Given the 

improved sensitivity of smoothing reported in the original article, 

this option deserves exploration in future work. The benefits might 

be especially visible in multi-subject studies where spatial 

smoothing may adjust for variation in EEG topography caused by 

different head sizes, head conductivity variability, and inaccuracies 

in electrode positioning. 

5.5.4 Nonstationarity 

Processes whose statistical properties (e.g. mean, variance, 

correlation), are subject to change are referred to as nonstationary. 

For time series nonstationarity is seen as trends, cycles or random 

walks of the data. Spatial nonstationarity can be seen as a non-

uniform smoothness in the data. Nonstationarity is a problem in 

data because many statistical algorithms have an implicit 

assumption of stationarity, and deviations, like deviations from any 

assumption, will lead to biases. The effects have been largely 

examined for fMRI analysis and have been corrections proposed 

(113, 80), including the TFCE for MRI approach (82), but to the best 

of our knowledge, no such literature exists for EEG datasets. For 

EEG, if the smoothness of the spatial topography differs over the 
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scalp, then larger cluster sizes would be expected for those areas by 

chance alone. Thus, future work should attempt to find estimates 

for data stationarity, especially in the spatial domain, in order to 

reduce any of these potential biases. 

5.5.5 Optimal signal detection assessment 

Given that one of the goals of the TFCE method is to 

eliminate post-hoc user qualification of the results of an analysis, it 

is somewhat hypocritical that such qualifications were necessary in 

order to further explain the results of the assessment measures for 

methods for simulated signals. For example, it was argued that the 

default parameters settings for TFCE should despite other 

parameters showing superior performance because of the 

limitations of the comparisons measures. Section 0already argued 

why the chosen measures of precision, recall, and MCC were 

nonetheless the optimal choices for comparison, given the major 

limitations of other measures. However, this is not to say that these 

measures are the best possible measures conceivable. Just as the 

proper analysis of real EEG datasets is crucial to the scientific 

community, the ability to accurately compare the different methods 

of analysis is essential to the achievement of that goal.  

Thus future work should look into providing a signal 

detection method that is able to handle ‘fuzzy’ truth (i.e. degrees of 

signal intensity as opposed to binary ground truth of signal/no 

signal); is not biased by imbalanced datasets that contain far more 

true negatives than true positives (as would be the case with most 

simulated datasets for EEG); one that gives a fair assessment for 

different signal types (as opposed to being biased to large clusters 

which contain more true positive signals by definition); and finally, 

one that would have the ability to assess the result structures of a 

range of significance levels from zero to a given threshold. 
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5.5.6 Software development 

Currently, the TFCE algorithm is implemented in two user-

friendly programs. The first is a simple menu asking the user to 

locate the ERP datasets files on the computer, as well as the 

electrode coordinates which then continues to run the analysis 

automatically. The second is the result viewer which was examined 

in some detail in section 2.2.2 There are already several software 

solutions for basic pre-processing of EEG data, some even freely 

available such as EEGLAB or SPM (free if one already has access to 

MATLAB). Integration of the current TFCE tools into those programs 

would allow for a complete analysis of EEG datasets from raw 

recorded data to interpretable results and would thus increase the 

likelihood that researchers use the method. Work has already 

begun to implement current algorithms into EEGLAB (because of its 

pre-processing capabilities, and ability to read and write to all major 

EEG data types), as well as Brainstorm (because of its intuitive data 

structure and visualisation capabilities; as well as its possibilities of 

integration of data from other modalities such as MRI). 

However, given that no single program has optimal 

features for pre-processing and visualisation, it may well be worth 

exploring the possibility of a full-standalone program for analysis. 

This option would provide two major advantages. Firstly, the 

program would be entirely run without the necessity for MATLAB, 

which would open its use for researchers without an available 

license (a possible issue for clinicians in smaller hospitals), and could 

substantially improve the runtime of the algorithm. Secondly, the 

program would be developed specifically with the features of TFCE 

in mind, and design of the interface could maximise the available 

features, and eliminate the use of redundant analysis options. 
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Chapter 6 - Appendix 

6.1 How many permutations are sufficient? 

Even for just 10 participants per group there would be 

184’756 ways in which we could permute the labels and create new 

datasets. This value increases exponentially as we increase the 

amount of labels (50 trials per condition in a single subject study 

could be permuted in the order of 10
29

). This mathematical fact 

makes it necessary to reduce the actual amount of permutations 

calculated in practice. This reduction should still allow a final p-

value within an acceptable range of the exact value but should be as 

minimal as possible to keep processing times to a reasonable range. 

For this reason, in practice most permutation tests are actually 

approximations to the exact test. This should not be confused 

however with approximate tests, such as all parametric variations, 

which rely on several assumptions to approximate to the exact 

result. 

In order to empirically assess how many permutations 

would be necessary and sufficient we generated random data (using 

MATLAB), and created 7 different datasets corresponding to 8, 10, 

12, 15, 20, 30, and 50 labels in 2 groups/conditions. The p-value was 

calculated for these datasets 50 times in order to obtain a mean p-

value, and more crucially, a standard deviation and range for the p-

values in order to understand to what degree of accuracy the p-

value could be taken from any of the 50 tests conducted. This test 

was performed using 9 values for the number of permutations, 100, 

250, 500, 1000, 2500, 5000, 10’000, 25’000, and 50’000. 

All datasets started with a relatively high mean p-value (in 

comparison to the calculated exact values for 8, 10, and 12 
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datasets, and the average mean for the other datasets where exact 

values could not be calculated). All p-values then steadily decreased 

and by 1000 permutations began to converge around the exact 

value. This has an important consequence, with few permutations, 

p-values tend to be higher than their real value, and as such using 

too few will tend to produce results which are too conservative. 

As expected, the standard deviation of the p-values 

steadily decreases with an increase in the number of permutations. 

Remarkably the absolute standard deviation seems to be 

independent of the total number of possible permutations. Thus, an 

ideal number of permutations, from the perspective of the standard 

deviation, depends on what degree of accuracy one is willing to 

accept. However, after about 2000 permutations the gain in 

accuracy steeply declines. Moreover, the increase in the number of 

permutations is directly proportional to the computational time and 

thus, after about 2000 permutations, for a gain in accuracy of less 

than 0.005 we would see a 10-fold increase in the time needed to 

analyse the data. In conclusion, any number of permutations above 

2000 is likely to give a fairly accurate result, although using more is 

always recommended if the computational resources allow it since 

the variance between analyses continues to systematically decrease 

above this value. Moreover, since too few permutations results in 

conservativeness of the test, if borderline significance values are 

found, it may well be worth using an increased number of 

permutations in order to determine whether that calculated value is 

actually significant when the p-value nears its exact rate. 

6.2 Analysis method pseudo-code 

The actual programming code which runs the TFCE analysis, 

which have both m-file scripts from MATLAB and c-file scripts which 
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require mex-compilation, is open source and will soon be made 

publicly available at no cost. What follows below is referred to as 

pseudo-code. This is in attempt to show the reader the inner 

workings of the program without the need to understand formal 

programming language. Thus, the linearity of the program is 

displayed but with a balance of normal, conversational language in 

the hopes the algorithm becomes understandable. Comments are 

presented in brackets and italicised). 

>> Load data into the Matlab workspace and check for consistencies 

>> Calculate channel neighbours (see section 6.3  

>> Calculate observed t-values (paired or unpaired) 

>> Run TFCE calculation on positive and negative t-values separately* (see 

6.2.1 for pseudo-code of TFCE values), then recombine values 

>> FOR i = 1 : number of permutations 

>> Create randomised dataset (for independent t-test this is done by 

shuffling the participants; for paired t-test data is multiplied randomly by 1 

or negative 1) 

>> Calculate t-values for randomised dataset 

>> Run TFCE calculation on positive and negative values separately 

>> Find the maximum absolute TFCE value and store 

>> END 

>> Find each observed TFCE value in histogram of maximum values and 

calculate proportion of more extreme values to obtain p-values 

 

                                                                 
* For EEG positive differences are just as likely to occur as negative values and so 
TFCE is performed for positive t-values and negative values t-values separately (by 
setting the other to zero), and later re-combined into a single dataset for 
permutation thresholding. This is preferable to using absolute values since it avoids 
the possibility that positive and negative differences which are spatial neighbours are 
seen as part of the same cluster. For EEG setups using relatively few channels, even 
large differences may be seen as spatial neighbours and using absolute differences 
could substantially bias the results. 



 

128  

 

Appendix 

6.2.1 TFCE calculation pseudo-code 

>> Find maximum t-value in input data 

>> Calculate thresholding steps from 0 to maximum t-value 

>> FOR i = 1 : number of thresholding steps (50 is default) 

>>    FOR j = 1 : number of data-points (channel x sample) 

>>        IF data-point is over threshold 

>> Look at channel neighbours and time points for other channel-

sample pairs that are also over that threshold 

>> Multiply all found data-points in cluster by TFCE equation 

>>        END 

>>    END 

>> END 

 

6.3  Calculating neighbours 

 In order to calculate any sort of cluster, the idea of 

adjacent points in data must be well defined. In the case of fMRI 

data, a certain voxels' neighbours can be easily defined as the 6, 18, 

or 26 voxels surrounding it depending on whether one considers 

faces, edges or corners as neighbours. In EEG data, time and 

frequency samples also have clear neighbouring points. Channels on 

the other hand are sparse samplings of a 2D surface, the scalp, in 3D 

space. Therefore, channels are not consistently organised into a 

neat grid and determining a channels neighbours is a non-trivial 

problem.  

 As described in section 1.5 SPM, although well known for 

its analyses of MRI data, can also be used to analyse EEG data. The 

statistical process it takes is essentially the same as for fMRI data as 

the EEG time-space data is converted into activation maps using the 

2D topography maps generated after interpolation of the channels 

collected. A 3D image is the generated by stacking the 2D maps over 
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consecutive time points. Projection of the 3D locations onto a 2D 

grid removes a dimension of data, and interpolation of channels 

over a uniform grid makes calculating neighbouring data points a 

matter of searching adjacent pixels. Although a seemingly elegant 

solution, there are several issues with this approach. Immediately 

apparent is that the process of interpolation will actually result in 

more data points than we originally recorded, and in doing so only 

adds to the multiple comparisons problem, as well increasing 

computational time. Since the data from any number of channels is 

made into the same image size, the benefit of recording a large 

number of channels is dramatically reduced (although still 

maintained in the analyses through the degrees of freedom). Data 

from 10 channels or 256 channels would still interpolate to build a 

32x32 or 64x64 pixel image for each sample. 

 Secondly, we have lost specificity in our electrode location 

by projecting them onto a 2D surface, usually by assuming a 

constant head radius. Although this may only seem like a minor 

precision issue, 2D projections, like when creating large maps of the 

earth's surface, cannot maintain distance or area relationships. 

Thus, when interpolating data between channels we will obtain 

larger or smaller clusters solely depending on the distance biases in 

the 2D projection. Furthermore, for non-uniform electrode 

coordinates where a single channel is relatively alone, the 

interpolation would result in a disproportionately large are 

representing a single channel. Conversely, a dense area of 

electrodes, all showing significant results would still result in a fairly 

small cluster despite having a lot of supporting information. 

 Maris used a different approach implemented in the 

software Fieldtrip (114), and classified channels as neighbours if 

they were within a 4 cm radius (75). Despite being arbitrary, such an 

absolute value poses problems for the varying amounts of 

electrodes that can be measured. Not only will there be no clusters 
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if the electrodes are more than 4 cm apart, but a further problem 

arises if there are more than 2 channels in a space of 4 cm. For 

example, if two electrodes, 4 cm apart, showed significant 

differences but between them there was a non-significant 

electrode, then it stands to reason that the two significant channels 

should not form a cluster. Cleary, this value of 4 cm can be altered 

for different electrode configurations, but it is both tedious and still 

arbitrary to define a new optimal neighbouring distance for subject 

and analysis. 

6.3.1 Triangulation of Electrode Coordinates 

 Here we introduce what we believe is a novel method of 

calculating channel neighbours using only the 3D coordinates of the 

sensors as input. Ideally, just as with the choice of statistic, there 

should be no arbitrary user parameter newly selected for each 

analysis, and the definition of neighbouring channels should be 

stable. However, the calculation should be flexible across a wide 

range of channel positions and total number of channels. 

Furthermore, we should be able to use the precise electrode 

coordinates in 3D space when they are recorded to increase 

sensitivity for datasets from a single participant, or averaged 

electrode coordinates for group studies.  

 The first step is to calculate the convex hull of the 

coordinates in 3D space. This is essentially calculating the triangles 

which would join all the channels to form a solid, empty 

polyhedron. The objective then is to automatically remove 

unwanted triangles such as the ones which would connect the most 

anterior channels to the most posterior ones (through the head), by 

searching the triangles for precisely the ones connecting three 

channels on the outer boundary of the electrode array. Once this 

has been done the mean triangle perimeters are calculated, and 

triangles are removed that have perimeters longer than 3 times the 
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standard deviation of that mean as this will remove perimeters that 

lie outside 99.73% of the normal, a highly conservative figure. This 

has the effect of removing triangles which are far larger than the 

mean, hence removing triangles between channels with large 

separations, such as the ones above and below the ear, or channels 

across removed channels.  

The algorithm which accomplishes these previous steps has 

been adapted from the Brainstorm program (115), which uses the 

calculated triangles solely for displaying electrode arrays. Finally, for 

each channel a list of neighbouring channels is created by finding 

the channels which share edges with the channel in question. The 

channel neighbours found can be inspected visually or as a table 

and any extreme irregularities could be changed manually before 

further calculation. This method is subsequently used for TFCE 

calculations as well as cluster size and mass. Thus making all cluster 

methods used here already superior in this respect to those used 

elsewhere. Figure 17 shows is an example of the results. 
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Figure 17 - Triangulation of neighbouring channels for a 129 channel cap in a 
geodesic array 

 

6.4 Analysis of source reconstructed data 

It has become common practice to first use source analysis 

on the EEG data and then compute statistics based on the 

computed sources (116–118). Although it would be technically 

possible to run a TFCE enhancement on the 3D source data over 

time, we do not recommend this approach for three reasons. Firstly, 

we are currently far from a standard method of source 

reconstruction and we would therefore open the data to a new set 
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of possible biases. Currently, source reconstructions with minimal 

assumptions tend to either produce large unspecific sources, but an 

increase in specificity requires an increase in, often not empirically 

justified, assumptions about its location. Secondly, even if these 

assumptions were perfect, small errors or artefacts in the scalp data 

will lead to much larger variation in the source localisation (119). 

Therefore, non-significant differences from random variation in the 

data may seem significant once source analysis has been carried 

out. Thirdly, the addition of a third spatial dimension to our data 

will dramatically increase the number of points we need to analyse 

and so increase the time necessary for analysis and increase our 

chance for false positives.  

Thus with source analysis we may drastically reduce the 

integrity of our data with little or no benefit to our analysis since 

real differences in the source of the activity should also be evident 

in our actual recording on the scalp. This is not to say that source 

analysis is not a useful tool but rather that we see no real advantage 

to performing the statistical analysis after localisation. Rather, the 

results of the statistical analysis on the EEG data should act as 

justification for the time points chosen to perform various source 

localisations. This would then be an additional aid to visualise and 

interpret the findings.  
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